Showing 10 of 144 results
Spectra of positively charged kaons in p+C interactions at 31 GeV/c were measured with the NA61/SHINE spectrometer at the CERN SPS. The analysis is based on the full set of data collected in 2007 with a graphite target with a thickness of 4% of a nuclear interaction length. Interaction cross sections and charged pion spectra were already measured using the same set of data. These new measurements in combination with the published ones are required to improve predictions of the neutrino flux for the T2K long baseline neutrino oscillation experiment in Japan. In particular, the knowledge of kaon production is crucial for precisely predicting the intrinsic electron neutrino component and the high energy tail of the T2K beam. The results are presented as a function of laboratory momentum in 2 intervals of the laboratory polar angle covering the range from 20 up to 240 mrad. The kaon spectra are compared with predictions of several hadron production models. Using the published pion results and the new kaon data, the K+/\pi+ ratios are computed.
The measured K+ production cross section and the K+/PI+ cross section ratio for the angular range 20 to 140 mrad. The errors on the ratios are statistical only.
The measured K+ production cross section and the K+/PI+ cross section ratio for the angular range 140 to 240 mrad. The errors on the ratios are statistical only.
The ALICE experiment has measured low-mass dimuon production in pp collisions at $\sqrt{s} = 7$ TeV in the dimuon rapidity region 2.5
Differential phi cross section from the di-muon channel as a function of transverse momentum, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one.
Differential omega cross section from the di-muon channel as a function of transverse momentum, the first error is statistical, the first systematic error is the correlated one, the second is the non-correlated one.
Total phi cross section from the di-muon data. The first error is statistical, the second is a systematic error.
Total omega cross section from the di-muon data. The first error is statistical, the second is a systematic error.
Ratio between the rho and omega total cross sections from the di-muon data. The first error is statistical, the second is a systematic error.
Results are presented on the production of jets of particles in association with a Z/gamma* boson, in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector. The analysis includes the full 2010 data set, collected with a low rate of multiple proton-proton collisions in the accelerator, corresponding to an integrated luminosity of 36 pb^-1. Inclusive jet cross sections in Z/gamma* events, with Z/gamma* decaying into electron or muon pairs, are measured for jets with transverse momentum pT > 30 GeV and jet rapidity |y| < 4.4. The measurements are compared to next-to-leading-order perturbative QCD calculations, and to predictions from different Monte Carlo generators implementing leading-order matrix elements supplemented by parton showers.
Cross section for Inclusive Jet Multiplicity corrected to the lepton common fiducial region and for QED radiation effects.
Ratio of cross sections for N/N-1 inclusive jet multiplicities corrected to the lepton common fiducial region and for QED radiation effects.
Inclusive jet differential cross section dsigma/dpt corrected to the lepton common fiducial region and for QED radiation effects.
Cross section dsigma/dpt as a function of the leading jet pt corrected to the lepton common fiducial region and for QED radiation effects.
Cross section dsigma/dpt as a function of the second-leading jet pt corrected to the lepton common fiducial region and for QED radiation effects.
Inclusive jet differential cross section dsigma/dy corrected to the lepton common fiducial region and for QED radiation effects.
Jet differential cross section dsigma/dy as a function of the leading jet y corrected to the lepton common fiducial region and for QED radiation effects.
Jet differential cross section dsigma/dy as a function of the second-leading jet y corrected to the lepton common fiducial region and for QED radiation effects.
Differential cross section dsigma/dmjj as a function of the dijet invariant mass mjj corrected to the lepton common fiducial region and for QED radiation effects.
Differential cross section dsigma/d DeltaYjj as a function of the dijet rapidity separation DeltaYjj corrected to the lepton common fiducial region and for QED radiation effects.
Differential cross section dsigma/d DeltaPhijj as a function of the dijet azimuthal separation DeltaPhijj corrected to the lepton common fiducial region and for QED radiation effects.
Differential cross section dsigma/d DeltaRjj as a function of the dijet angular separation DeltaRjj corrected to the lepton common fiducial region and for QED radiation effects.
Cross section for Inclusive Jet Multiplicity for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Ratio of cross sections for N/N-1 inclusive jet multiplicities for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Measured normalized inclusive jet differential cross section 1/sigma_DY dsigma/dpt for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Measured normalized leading jet differential cross section 1/sigma_DY dsigma/dpt for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Measured normalized second-leading jet differential cross section 1/sigma_DY dsigma/dpt for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Measured normalized inclusive jet differential cross section 1/sigma_DY dsigma/dy for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Measured normalized leading jet differential cross section 1/sigma_DY dsigma/dy for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Measured normalized second leading jet differential cross section 1/sigma_DY dsigma/dy for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Measured normalized differential cross section as a function of dijet invariant mass 1/sigma_DY dsigma/dmjj for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Measured normalized differential cross section as a function of dijet rapidity separation 1/sigma_DY dsigma/dDeltaYjj for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Measured normalized differential cross section as a function of dijet azimuthal separation 1/sigma_DY dsigma/dDeltaPhijj (1/rad.) for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
Measured normalized differential cross section as a function of dijet angular separation 1/sigma_DY dsigma/dDeltaRjj for the electron channel and the muon channel in the individual lepton fiducial regions and uncorrected for QED effects.
The production of Kshort and Lambda hadrons is studied in inelastic pp collisions at sqrt(s) = 0.9 and 7 TeV collected with the ATLAS detector at the LHC using a minimum-bias trigger. The observed distributions of transverse momentum, rapidity, and multiplicity are corrected to hadron level in a model-independent way within well defined phase-space regions. The distribution of the production ratio of Lambdabar to Lambda baryons is also measured. The results are compared with various Monte Carlo simulation models. Although most of these models agree with data to within 15% in the Kshort distributions, substantial disagreements with data are found in the Lambda distributions of transverse momentum.
The corrected transverse momentum distribution of KS mesons at 7000 GeV.
The corrected rapidity distribution of KS mesons at 7000 GeV.
The corrected multiplicity distribution of KS mesons at 7000 GeV.
The corrected transverse momentum distribution of KS mesons at 900 GeV.
The corrected rapidity distribution of KS mesons at 900 GeV.
The corrected multiplicity distribution of KS mesons at 900 GeV.
The corrected transverse momentum distribution of LAMBDA baryons at 7000 GeV.
The corrected rapidity distribution of LAMBDA baryons at 7000 GeV.
The corrected multiplicity distribution of LAMBDA baryons at 7000 GeV.
The corrected transverse momentum distribution of LAMBDA baryons at 900 GeV.
The corrected rapidity distribution of LAMBDA baryons at 900 GeV.
The corrected multiplicity distribution of LAMBDA baryons at 900 GeV.
The production ratio between LAMBDABAR and LAMBDA baryons at 7000 GeV as a function of rapidity.
The production ratio between LAMBDABAR and LAMBDA baryons at 7000 GeV as a function of transverse momentum.
The production ratio between LAMBDABAR and LAMBDA baryons at 900 GeV as a function of rapidity.
The production ratio between LAMBDABAR and LAMBDA baryons at 900 GeV as a function of transverse momentum.
We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% {\lambda}int thick stationary aluminium target, of proton and pion beams with momentum from \pm3 GeV/c to \pm15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on aluminium nuclei are compared with cross-sections on beryllium, carbon, copper, tin, tantalum and lead nuclei.
Ratio of deuterons to protons for polar angle 20-30 deg.
Ratio of deuterons to protons for polar angle 30-45 deg.
Ratio of deuterons to protons for polar angle 45-65 deg.
Ratio of deuterons to protons for polar angle 65-90 deg.
Ratio of deuterons to protons for polar angle 90-125 deg.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 12.9 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Aluminium interactions at a beam energy of 15 GeV.
The ratio of production cross sections of the W and Z bosons with exactly one associated jet is presented as a function of jet transverse momentum threshold. The measurement has been designed to maximise cancellation of experimental and theoretical uncertainties, and is reported both within a particle-level kinematic range corresponding to the detector acceptance and as a total cross-section ratio. Results are obtained with the ATLAS detector at the LHC in pp collisions at a centre-of-mass energy of 7 TeV using an integrated luminosity of 33 pb^-1. The results are compared with perturbative leading-order, leading-log, and next-to-leading-order QCD predictions, and are found to agree within experimental and theoretical uncertainties. The ratio is measured for events with a single jet with p_T > 30 GeV to be 8.73 +/- 0.30 (stat) +/- 0.40 (syst) in the electron channel, and $ 8.49 +/- 0.23 (stat) +/- 0.33 (syst) in the muon channel.
The ratio of W to Z production corrected to full phase space for the two channels combined.
The ratios of W to Z production in the fiducial region for the individual lepton channels and for the channels combined.
Inclusive multi-jet production is studied in proton-proton collisions at a center-of-mass energy of 7 TeV, using the ATLAS detector. The data sample corresponds to an integrated luminosity of 2.4 pb^-1. Results on multi-jet cross sections are presented and compared to both leading-order plus parton-shower Monte Carlo predictions and to next-to-leading-order QCD calculations.
Total inclusive jet cross section as a function of the jet multiplicity.
Ratio of the n-jet cross section to the (n-1) jet cross section.
Differential cross section as a function of the leading jet PT for events with jet multiplicity >= 2.
Differential cross section as a function of the 2nd leading jet PT for events with jet multiplicity >= 2.
Differential cross section as a function of the 3rd leading jet PT for events with jet multiplicity >= 3.
Differential cross section as a function of the 4th leading jet PT for events with jet multiplicity >= 4.
Differential cross section as a function of the scalar sum of the jet PTs (HT) for events with jet multiplicity >= 2.
Differential cross section as a function of the scalar sum of the jet PTs (HT) for events with jet multiplicity >= 3.
Differential cross section as a function of the scalar sum of the jet PTs (HT) for events with jet multiplicity >= 4.
3-to-2 jet differential cross section ratio as a function of the leading jet PT for a minimum non-leading jet PT of 60 GeV. Also tabulated are the theoretical values from a NLO pQCD calculation with total systematic error.
3-to-2 jet differential cross section ratio as a function of the leading jet PT for a minimum non-leading jet PT of 80 GeV. Also tabulated are the theoretical values from a NLO pQCD calculation with total systematic error.
3-to-2 jet differential cross section ratio as a function of the leading jet PT for a minimum non-leading jet PT of 110 GeV. Also tabulated are the theoretical values from a NLO pQCD calculation with total systematic error.
3-to-2 jet differential cross section ratio as a function of the leading jet PT with R=0.4 for a minimum non-leading jet PT of 60 GeV. Also tabulated are the theoretical values from a NLO pQCD calculation with total systematic error.
3-to-2 jet differential cross section ratio as a function of the leading jet PT with R=0.4 for a minimum non-leading jet PT of 80 GeV. Also tabulated are the theoretical values from a NLO pQCD calculation with total systematic error.
3-to-2 jet differential cross section ratio as a function of the leading jet PT with R=0.4 for a minimum non-leading jet PT of 110 GeV. Also tabulated are the theoretical values from a NLO pQCD calculation with total systematic error.
3-to-2 jet differential cross section ratio as a function of the sum of the PTs of the two leading jets with R=0.6. Also tabulated are the theoretical values from a NLO pQCD calculation with total systematic error.
3-to-2 jet differential cross section ratio as a function of the sum of the PTs of the two leading jets with R=0.4. Also tabulated are the theoretical values from a NLO pQCD calculation with total systematic error.
The $\bar{\Lambda} / \Lambda$ and $\bar{\Lambda} / K^0_\mathrm{S}$ production ratios are measured by the LHCb detector from $0.3\,\mathrm{nb}^{-1}$ of $pp$ collisions delivered by the LHC at $\sqrt{s} = 0.9$\,TeV and $1.8\,\mathrm{nb}^{-1}$ at $\sqrt{s} = 7$\,TeV. Both ratios are presented as a function of transverse momentum, $p_\mathrm{T}$, and rapidity, $y$, in the ranges {$0.15 < p_\mathrm{T} < 2.50\,\mathrm{GeV}/c$} and {$2.0
$\bar{\Lambda}$ to $\Lambda$ production ratio in $pp$ collisions at 900 GeV in $y$ intervals for ($0.25 < p_T < 0.65$), ($0.65 < p_T < 1.00$), ($1.00 < p_T < 2.50$) GeV$/c$.
$\bar{\Lambda}$ to $K^{0}_{s}$ production ratio in $pp$ collisions at 900 GeV in $y$ intervals for ($0.25 < p_T < 0.65$), ($0.65 < p_T < 1.00$), ($1.00 < p_T < 2.50$) GeV$/c$.
$\bar{\Lambda}$ to $\Lambda$ production ratio in $pp$ collisions at 900 GeV ($0.25 < p_T < 2.50$ GeV$/c$) in $y$ intervals.
$\bar{\Lambda}$ over $K^{0}_{s}$ production ratio in $pp$ collisions at 900 Gev ($0.25 < p_T < 2.50$ GeV$/c$) in $y$ intervals.
$\bar{\Lambda}$ to $\Lambda$ production ratio in $pp$ collisions at 900 Gev for $2.0 < y < 4.0$ in intervals of $p_T$.
$\bar{\Lambda}$ to $K^{0}_{s}$ production ratio in $pp$ collisions at 900 Gev for $2.0 < y < 4.0$ in intervals of $p_T$.
$\bar{\Lambda}$ to $K^{0}_{s}$ production ratio in $pp$ collisions at 900 Gev ($2.0 < y < 4.0$; $0.25 < p_T < 2.50$ GeV$/c$) in rapidity loss intervals.
$\bar{\Lambda}$ to $K^{0}_{s}$ production ratio in $pp$ collisions at 900 Gev ($2.0 < y < 4.0$; $0.25 < p_T < 2.50$ GeV$/c$) in rapidity loss intervals.
$\bar{\Lambda}$ to $\Lambda$ production ratio in $pp$ collisions at 7 TeV in $y$ intervals for ($0.15 < p_T < 0.65$), ($0.65 < p_T < 1.00$), ($1.00 < p_T < 2.50$) GeV$/c$.
$\bar{\Lambda}$ to $K^{0}_{s}$ production ratio in $pp$ collisions at 7 TeV in $y$ intervals for ($0.15 < p_T < 0.65$), ($0.65 < p_T < 1.00$), ($1.00 < p_T < 2.50$) GeV$/c$.
$\bar{\Lambda}$ to $\Lambda$ production ratio in $pp$ collisions at 7 TeV ($0.15 < p_T < 2.50$ GeV$/c$) in $y$ intervals.
$\bar{\Lambda}$ to $K^{0}_{s}$ production ratio in $pp$ collisions at 7 TeV ($0.15 < p_T < 2.50$ GeV$/c$) in $y$ intervals.
$\bar{\Lambda}$ to $\Lambda$ production ratio in $pp$ collisions at 7 Tev for $2.0 < y < 4.5$ in $p_T$ intervals.
$\bar{\Lambda}$ to $K^{0}_{s}$ production ratio in $pp$ collisions at 7 Tev for $2.0 < y < 4.5$ in $p_T$ intervals.
$\bar{\Lambda}$ to $\Lambda$ production ratio in $pp$ collisions at 7 Tev ($2.0 < y < 4.5$; $0.15 < p_T < 2.50$ GeV$/c$) in rapidity loss intervals.
$\bar{\Lambda}$ to $K^{0}_{s}$ production ratio in $pp$ collisions at 7 Tev ($2.0 < y < 4.5$; $0.15 < p_T < 2.50$ GeV$/c$) in rapidity loss intervals.
We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary tin target, of proton and pion beams with momentum from \pm3 GeV/c to \pm15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on tin nuclei are compared with cross-sections on beryllium, carbon, copper, tantalum and lead nuclei.
Ratio of deuterons to protons for polar angle 20-30 deg.
Ratio of deuterons to protons for polar angle 30-45 deg.
Ratio of deuterons to protons for polar angle 45-65 deg.
Ratio of deuterons to protons for polar angle 65-90 deg.
Ratio of deuterons to protons for polar angle 90-125 deg.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 3 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 5 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 8 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 12 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive P production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI+ production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in P Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI+ Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 20-30 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 30-40 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 40-50 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 50-60 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 60-75 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 75-90 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 90-105 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The double-differential cross section as a function of PT in the polar ange range 105-125 deg. for inclusive PI- production in PI- Tin interactions at a beam energy of 15 GeV.
The inclusive J/psi production cross-section and fraction of J/psi mesons produced in B-hadron decays are measured in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector at the LHC, as a function of the transverse momentum and rapidity of the J/psi, using 2.3 pb-1 of integrated luminosity. The cross-section is measured from a minimum pT of 1 GeV to a maximum of 70 GeV and for rapidities within |y| < 2.4 giving the widest reach of any measurement of J/psi production to date. The differential production cross-sections of prompt and non-prompt J/psi are separately determined and are compared to Colour Singlet NNLO*, Colour Evaporation Model, and FONLL predictions.
Total cross section for inclusive andd non-prompt J/PSI (-> MU+MU-) production in the range |y| < 2.4 and pT > 7 GeV under the FLAT (ie isotropic) production scenario. The second (sys) error is the uncertainty assoicated with the spin and the third is the luminosity uncertainty.
Total cross section for inclusive and non-prompt J/PSI (-> MU+MU-) production in the range 1.5 < |y| < 2 and pT > 1 GeV under the FLAT (ie isotropic) production scenario. The second (sys) error is the uncertainty assoicated with the spin and the third is the luminosity uncertainty.
Inclusive J/psi production cross-section as a function of J/psi pT in the J/psi rapidity (|y|) bin 2<|y|<2.4. The first uncertainty is statistical, the second is systematic and the third encapsulates any possible variation due to spin-alignment from the unpolarised central value.
Inclusive J/psi production cross-section as a function of J/psi pT in the J/psi rapidity (|y|) bin 1.5<|y|<2. The first uncertainty is statistical, the second is systematic and the third encapsulates any possible variation due to spin-alignment from the unpolarised central value.
Inclusive J/psi production cross-section as a function of J/psi pT in the J/psi rapidity (|y|) bin 0.75<|y|<1.5. The first uncertainty is statistical, the second is systematic and the third encapsulates any possible variation due to spin-alignment from the unpolarised central value.
Inclusive J/psi production cross-section as a function of J/psi pT in the J/psi rapidity (|y|) bin |y|<0.75. The first uncertainty is statistical, the second is systematic and the third encapsulates any possible variation due to spin-alignment from the unpolarised central value.
Non-prompt to inclusive production cross-section fraction fB as a function of J/psi pT for J/psi rapidity |y|<0.75 under the assumption that prompt and non-prompt J/psi production is unpolarised (lambda_theta = 0). The spin-alignment envelope spans the range of possible prompt cross-sections under various polarisation hypotheses, plus the range of non-prompt cross-sections within lambda_theta = +/- 0.1. The first uncertainty is statistical, the second uncertainty is systematic, the third number is the uncertainty due to spin-alignment.}.
Non-prompt to inclusive production cross-section fraction fB as a function of J/psi pT for J/psi rapidity 0.75<|y|<1.5 under the assumption that prompt and non-prompt J/psi production is unpolarised (lambda_theta = 0). The spin-alignment envelope spans the range of possible prompt cross-sections under various polarisation hypotheses, plus the range of non-prompt cross-sections within lambda_theta = +/-0.1. The first uncertainty is statistical, the second uncertainty is systematic, the third number is the uncertainty due to spin-alignment.
Non-prompt to inclusive production cross-section fraction fB as a function of J/psi pT for J/psi rapidity 1.5<|y|<2 under the assumption that prompt and non-prompt J/psi production is unpolarised (lambda_theta = 0). The spin-alignment envelope spans the range of possible prompt cross-sections under various polarisation hypotheses, plus the range of non-prompt cross-sections within lambda_theta = +/-0.1. The first uncertainty is statistical, the second uncertainty is systematic, the third number is the uncertainty due to spin-alignment.
Non-prompt to inclusive production cross-section fraction fB as a function of J/psi pT for J/psi rapidity 2<|y|<2.4 under the assumption that prompt and non-prompt J/psi production is unpolarised (lambda_theta = 0). The spin-alignment envelope spans the range of possible prompt cross-sections under various polarisation hypotheses, plus the range of non-prompt cross-sections within lambda_theta =+/-0.1. The first uncertainty is statistical, the second uncertainty is systematic, the third number is the uncertainty due to spin-alignment.
Non-prompt J/psi production cross-sections as a function of J/psi pT for J/psi rapidity |y|<0.75 under the assumption that prompt and non-prompt J/psi production is unpolarised (lambda_theta = 0), and the spin-alignment envelope spans the range of non-prompt cross-sections within lambda_theta = +/- 0.1. The first uncertainty is statistical, the second uncertainty is systematic. Comparison is made to FONLL predictions.
Non-prompt J/psi production cross-sections as a function of J/psi pT for J/psi rapidity 0.75<|y|<1.5 under the assumption that prompt and non-prompt J/psi production is unpolarised (lambda_theta = 0), and the spin-alignment envelope spans the range of non-prompt cross-sections within lambda_theta = +/- 0.1. The first uncertainty is statistical, the second uncertainty is systematic. Comparison is made to FONLL predictions.
Non-prompt J/psi production cross-sections as a function of J/psi pT for J/psi rapidity 1.5<|y|<2 under the assumption that prompt and non-prompt J/psi production is unpolarised (lambda_theta = 0), and the spin-alignment envelope spans the range of non-prompt cross-sections within lambda_theta = +/- 0.1. The first uncertainty is statistical, the second uncertainty is systematic. Comparison is made to FONLL predictions.
Non-prompt J/psi production cross-sections as a function of J/psi pT for J/psi rapidity 2<|y|<2.4 under the assumption that prompt and non-prompt J/psi production is unpolarised (lambda_theta = 0), and the spin-alignment envelope spans the range of non-prompt cross-sections within lambda_theta = +/- 0.1. The first uncertainty is statistical, the second uncertainty is systematic. Comparison is made to FONLL predictions.
Prompt J/psi production cross-sections as a function of J/psi pT for J/psi rapidity |y|<0.75. The central value assumes unpolarised (lambda_theta = 0) prompt and non-prompt production, and the spin-alignment envelope spans the range of possible prompt cross-sections under various polarisation hypotheses. The first quoted uncertainty is statistical, the second uncertainty is systematic. Comparison is made to the Colour Evaporation Model prediction.
Prompt J/psi production cross-sections as a function of J/psi pT for J/psi rapidity 0.75<|y|<1.5. The central value assumes unpolarised (lambda_theta = 0) prompt and non-prompt production, and the spin-alignment envelope spans the range of possible prompt cross-sections under various polarisation hypotheses. The first quoted uncertainty is statistical, the second uncertainty is systematic. Comparison is made to the Colour Evaporation Model prediction.
Prompt J/psi production cross-sections as a function of J/psi pT for J/psi rapidity 1.5<|y|<2. The central value assumes unpolarised (lambda_theta = 0) prompt and non-prompt production, and the spin-alignment envelope spans the range of possible prompt cross-sections under various polarisation hypotheses. The first quoted uncertainty is statistical, the second uncertainty is systematic. Comparison is made to the Colour Evaporation Model prediction.
Prompt J/psi production cross-sections as a function of J/psi pT for J/psi rapidity 2<|y|<2.4. The central value assumes unpolarised (lambda_theta = 0) prompt and non-prompt production, and the spin-alignment envelope spans the range of possible prompt cross-sections under various polarisation hypotheses. The first quoted uncertainty is statistical, the second uncertainty is systematic. Comparison is made to the Colour Evaporation Model prediction.
Unweighted J/psi candidate yields in bins of $J/psi transverse momentum and rapidity. Uncertainties are statistical only.
Summary table of all sources of considered systematic uncertainty and statistical uncertainty (as a percentage) on the corrected inclusive J/psi production cross-section, for absolute J/psi rapidities within 2<|y|<2.4. The sources of systematic error shown are, in order, Acceptance, Muon recognition, Trigger, Fitting and the Total systematics. Also shown in the last error is the possible envelope of variation the central result due to uncertainty on spin-alignment of the J\psi.
Summary table of all sources of considered systematic uncertainty and statistical uncertainty (as a percentage) on the corrected inclusive J/psi production cross-section, for absolute J/psi rapidities within 1.5<|y|<2. The sources of systematic error shown are, in order, Acceptance, Muon recognition, Trigger, Fitting and the Total systematics. Also shown in the last error is the possible envelope of variation the central result due to uncertainty on spin-alignment of the J/psi.
Summary table of all sources of considered systematic uncertainty and statistical uncertainty (as a percentage) on the corrected inclusive J/psi production cross-section, for absolute J/psi rapidities within 0.75<|y|<1.5. The sources of systematic error shown are, in order, Acceptance, Muon recognition, Trigger, Fitting and the Total systematics. Also shown in the last error is the possible envelope of variation the central result due to uncertainty on spin-alignment of the J/psi.
Summary table of all sources of considered systematic uncertainty and statistical uncertainty (as a percentage) on the corrected inclusive J/psi production cross-section, for absolute rapidities within |y|<0.75. The sources of systematic error shown are, in order, Acceptance, Muon recognition, Trigger, Fitting and the Total systematics. Also shown in the last error is the possible envelope of variation the central result due to uncertainty on spin-alignment of the J/psi.
Breakdown of sources of systematic uncertainty on the non-prompt J/psi fraction measurements, for the bin |y|<0.75, as a function of the J/psi pT.
Breakdown of sources of systematic uncertainty on the non-prompt J/psi fraction measurements, for the bin 0.75<|y|<1.5, as a function of the J/psi pT.
Breakdown of sources of systematic uncertainty on the non-prompt J/psi fraction measurements, for the bin 1.75<|y|<2.0, as a function of the J/psi pT.
Breakdown of sources of systematic uncertainty on the non-prompt J/psi fraction measurements, for the bin 2.0<|y|<2.4, as a function of the J/psi pT.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.