The p p elastic differential cross section at 50 GeV/c has been measured in a two-arm spectrometer experiment at the CERN SPS. The | t | range covered extends from 0.7 to 5 (GeV/c. A pronounced dip-bump structure is observed with a sharp minimum at | t | = 1.5 (GeV/ c ) 2 .
No description provided.
The asymmetry A LL for pp elastic scattering has been measured at 650 and 800 MeV in the region of Coulomb-nuclear interference. The real part of the double-spin-flip amplitude extracted from these data completes our determination of the forward pp scattering amplitudes at these energies. Comparison with the predictions of forward dispersion relations reveals a discrepancy in the spin-dependent channels at 650 MeV.
No description provided.
No description provided.
The high antiproton-proton luminosity obtained by using a target system consisting of a hydrogen gas-jet crossing a coasting beam of cooled antiproton circulating in one of the rings of CERN's ISR provides the possibility to measure low cross section reactions with very high precision. We present measurements of the antiproton-proton elastic cross section at 90° CM at incident momenta between 3.5 GeV/ c and 5.7 GeV/ c . The precision of these measurements is much higher than previously reported results. The data show that the cross section of this reaction decreases faster than s −12 over this momentum range.
No description provided.
No description provided.
The spin rotation parameter R has been measured at CERN, for π ± p at 6 GeV c and for π − p at 16 GeV c , with t ranging from −0.19 to −0.51 ( GeV c ) 2 . The parameter A was measured for π − p at 6 GeV c in the interval between t =−0.19 and minus;0.41 ( GeV c ) 2 . The averaged values are the following; R (+6) =−0.08±0.04, R (−6) =−0.23±0.05 and R (−16) =−0.23±0.05. The values obtained for A are close to +1.
No description provided.
No description provided.
No description provided.
Antiproton-proton elastic scattering has been measured at 5 GeV/c. A total of 30 000 events were observed in the angular range 17° < θ cm < 136°, corresponding to 0.3 < − t < 7.7 (GeV/ c 2 ). In addition to the known dip at − t = 0.5 ( GeV / c ) 2 , we observe a structure at about − t = 2 (GeV/ c ) 2 and a backward peak with a slope4.1 ± 0.6 (GeV/ c ) 2 . The extrapolated differential cross-section at u = 0 is 1.3 ± 0.8 μ b/(GeV/ c ) 2 .
No description provided.
No description provided.
The differential cross section for antiproton-proton elastic scattering has been measured for the beam momenta between 180 and 600 MeV/c. The real-to-imaginary ratio of the forward elastic scattering amplitude is derived from the Coulomb-nuclear interference. The ratio is found to be close to zero between 180 and 500 MeV/c with a minimum ofρ=−0.14 at 260 MeV/c. This result is contrary to model predictions. The phase shifts for thes-,p- andd-waves are extracted. The partial wave compositions of the elastic and inelastic cross sections have been determined. A large contribution of thep-wave is identified in the antiproton-proton interactions at small momenta.
No description provided.
No description provided.
No description provided.
We measured the analyzing power A and the spin-spin correlation parameter Ann, in large-P⊥2 proton-proton elastic scattering, using a polarized-proton target and the polarized-proton beam at the Brookhaven Alternating-Gradient Synchrotron. We also used our polarimeter to measure A at small P⊥2 at 13 GeV with good precision and found some deviation from the expected 1Plab behavior. At 18.5 GeV/c we found Ann=(−2±16)% at P⊥2=4.7 (GeV/c)2. Comparison with lower-energy data from the Argonne Zero-Gradient Synchrotron shows a sharp and surprising energy dependence for Ann at large P⊥2.
POL is error weighted average of polarized beam and target measurements.
POL is error-weighted average of polarized beam and target measurements.
POL is error-weighted average of polarized beam and target measurement.
None
No description provided.
Proton-proton elastic scattering using 201- and 400-GeV/c extracted beams at Fermilab has been measured in the region 4.9<−t<14.4 GeV2. Contrary to predictions of diffraction models, there is no sign of a second dip or "break," and the slope A in the fit exp(At) is smaller than predicted. It drops from 1.5 to 0.8 GeV−2 over our t range. The shape of the t distribution can be fitted by the power law dσdt∝t−8.4 which is close to a quantum-chromodynamics (QCD) prediction of t−8. At fixed t the 201-GeV/c cross sections are about 2.3 times those at 400 GeV/c which is compatible with the QCD and constituent-interchange-model prediction that dσdt∝s−10 at fixed ts.
LOW T.
HIGH T.
LOW T.
New experimental results are presented on proton-proton elastic scattering in the range of momentum transfer 4 GeV 2 < − t < 10 GeV 2 at the centre-of-mass energy of √ s = 53 GeV. The data have been obtained using the Split-Field Magnet detector at the CERN Intersecting Storage Rings. We observe another change of slope of the differential cross section near − t =6.5 GeV 2 .
NUMERICAL VALUES SUPPLIED BY K. WINTER.