Angular distributions of charge asymmetry A(Tπ,θ), have been measured for πd elastic scattering. Data were obtained in the backward hemisphere for pion bombarding energies of 143, 180, 220, and 256 MeV. The results are compared with predictions employing different mass and width parameters for the delta isobars.
No description provided.
No description provided.
No description provided.
Integral cross sections for the scattering of pions by protons into angles greater than 30° (lab) have been measured at a wide range of energies spanning the delta resonance using liquid hydrogen targets. Cross sections were measured for π+p scattering at 40 energies from 39.8 to 283.9 MeV and for π−p at 15 energies from 80.0 to 283.9 MeV. Comparisons with phase shift predictions from the Karlsruhe group show good agreement on resonance but significant deviations below 100 MeV.
The uncertainties shown include statistical and systematic contributions.
The uncertainties shown include statistical and systematic contributions.
Absolute π±d differential cross sections and charge asymmetries have been measured at an incident pion energy of 65 MeV, using an active target of deuterated scintillator plastic to detect recoil deuterons in coincidence with scattered pions. Statistical and systematic uncertainties in the cross sections are each typically ±3%. The charge asymmetry is consistent with theoretical predictions.
No description provided.
Angular distributions of the analyzing powers for π+p→ and π−p→ elastic scattering have been measured in a single-scattering experiment employing a polarized proton target. Measurements were obtained for pion energies of 98, 139, 166, 215, and 263 MeV. The addition of these data to the existing πp database significantly reduces the uncertainties in all S and P phase shifts for πp reactions over the delta resonance.
Measured values of the analyzing power for PI+ P elastic scattering at incident kinetic energy 98 MeV.
Measured values of the analyzing power for PI+ P elastic scattering at incident kinetic energy 139 MeV.
Measured values of the analyzing power for PI+ P elastic scattering at incident kinetic energy 166 MeV.
We have studied the two reactions 12C(π+,pp) and 12C(π+,ppp) in one experiment, using the CHAOS spectrometer at TRIUMF, at incident pion energies of 200, 240, and 280 MeV. In both cases, we are able to distinguish between reaction mechanisms involving only the detected protons, and those in which additional nucleons must have participated, on the basis of missing momentum. In the case of 12C(π+,ppp), we identify events due to the two step process of π+p quasielastic scattering followed by two-nucleon absorption. Estimates are made for the total cross sections for the various absorption mechanisms.
The total observed cross sections are not corrected for limited experimental acceptance. No errors are given. The comments (C=MNKO), (C=2NP), and (C=GT2NP) stand for multy nucleon knockout, 2 nucleons participated, and more than 2 nucleons participated, respectively.
Measurements of the vector analyzing power iT11 in πd elastic scattering at 49 MeV have been performed using a dynamically polarized target and a magnetic spectrometer. Data at seven π+ laboratory scattering angles between 50° and 130° were taken together with a complementary measurement at 60° for π−d elastic scattering. In general, we find agreement with models that include the πN P11 amplitude and disagreement with models that exclude or suppress it.
No description provided.
No description provided.
The pion induced pion production reactions π±p→π+π±n were studied at projectile incident energies of 223, 243, 264, 284, and 305 MeV, using a cryogenic liquid hydrogen target. The Canadian High Acceptance Orbit Spectrometer was used to detect the two outgoing pions in coincidence. The experimental results are presented in the form of single differential cross sections. Total cross sections obtained by integrating the differential quantities are also reported. In addition, the invariant mass distributions from the (π+π−) channel were fitted to determine the parameters for an extended model based on that of Oset and Vicente-Vacas. We find the model parameters obtained from fitting the (π+π−) data do not describe the invariant mass distributions in the (π+π+) channel.
Total cross sections were obtained by integrating the differential cross section over all three variables: M(pi,pi)**2, t, Cos(Theta(pi)).
Total cross sections were obtained by integrating the differential cross section over all three variables: M(pi,pi)**2, t, Cos(Theta(pi)).
New experimental results on the π + d → π + π − pp and π + d → π + π + nn reactions at T π 1 = 283 MeV are presented. In-plane coincidence data were taken with the CHAOS spectrometer using pions from the M11 channel at TRIUMF. Because of the quasi-free nature of the pion-production reaction, the present study is equivalent to studying the elementary π + N → π + π ± N reactions on protons and neutrons simultaneously. These exclusive measurements provide a set of many-fold differential cross sections which are an ideal testing ground for microscopic models describing the πN → ππN reaction. The interpretation of the data relies on a model which is based on effective chiral Lagrangians to describe the piece of the reaction that includes only π's and N 's, and on effective Lagrangians to account for intermediate Δ's and N ∗ ' s . The measured many-fold differential cross sections are used to constrain some parameters of the model (ξ, f Δ , C, g N ∗ Δπ and g N ∗ Nπ ). Finally, the π + π ± invariant mass distributions display no evidence of strongly interacting pion pairs in either the I = J = 0 or the I = 2 J = 0 channels.
No description provided.
No description provided.
The total cross section for the π−p→π−π+n reaction has been measured at incident pion kinetic energies of 200, 190, 184, and 180 MeV. In addition, the π+p→π+π+n reaction was measured at 200 and 184 MeV. A fit of the cross sections by heavy baryon chiral perturbation theory yields values of 8.5±0.6(mπ−3) and 2.5±0.1(mπ−3) for the reaction matrix elements A10 and A32, which correspond to values for the s-wave isospin-0 and isospin-2 π−π scattering lengths of a0=0.23±0.08(mπ−1) and a2=−0.031±0.008(mπ−1), respectively.
No description provided.
We have measured the absolute cross section σ(θ) and complete sets of spin observables A00ij in He3(p,p) elastic scattering at energies of 200 and 500 MeV. The observables depend on linear combinations of six complex scattering amplitudes for the p−3He system and provide a severe test of current reaction models. The in-scattering plane observables (A00mm, A00ll, A00lm, and A00ml) are all in quantitative disagreement with fully microscopic nonrelativistic optical model calculations and nonrelativistic distorted wave Born approximation calculations.
A00N0 is analyzing power.
A00N0 is analyzing power.
A00NN is spin correlation parameter.