This paper presents the first measurement of the inclusive J/Psi production cross section in the forward pseudorapidity region 2.5<|eta|<3.7 in ppbar collisions at sqrt(s)=1.8TeV. The results are based on 9.8 pb-1 of data collected using the D0 detector at the Fermilab Tevatron Collider. The inclusive J/Psi cross section for transverse momenta between 1 and 16 GeV/c is compared with theoretical models of charmonium production.
Only statistical errors are shown. Cross section tines branching ratio.
We have searched for first generation scalar leptoquark (LQ) pairs in the enu+jets channel using ppbar collider data (integrated luminosity= 115 pb^-1) collected by the DZero experiment at the Fermilab Tevatron during 1992-96. The analysis yields no candidate events. We combine the results with those from the ee+jets and nunu+jets channels to obtain 95% confidence level (CL) upper limits on the LQ pair production cross section as a function of mass and of beta, the branching fraction to a charged lepton. Comparing with the next-to-leading order theory, we set 95% CL lower limits on the LQ mass of 225, 204, and 79 GeV/c^2 for beta=1, 1/2, and 0, respectively.
The cross section values are extracted with the assumption that BR(LQ --> EQUARK) = 1/2.
We present limits on anomalous WWZ and WW-gamma couplings from a search for WW and WZ production in p-bar p collisions at sqrt(s)=1.8 TeV. We use p-bar p -> e-nu jjX events recorded with the D0 detector at the Fermilab Tevatron Collider during the 1992-1995 run. The data sample corresponds to an integrated luminosity of 96.0+-5.1 pb~(-1). Assuming identical WWZ and WW-gamma coupling parameters, the 95% CL limits on the CP-conserving couplings are -0.33
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n.
We present the results of a search for third generation leptoquark (LQ) pairs in 110±8pb−1of p¯p collisions at s=1.8TeV recorded by the Collider Detector at Fermilab. We assume third generation leptoquarks decay to a τ lepton and a b quark with branching ratio β. We observe one candidate event, consistent with standard model background expectations. We place upper limits on σ(p¯p→LQLQ¯)̇β2 as a function of the leptoquark mass MLQ. We exclude at 95% confidence level scalar leptoquarks with MLQ<99GeV/c2, gauge vector leptoquarks with MLQ<225GeV/c2, and nongauge vector leptoquarks with MLQ<170GeV/c2 for β=1.
The cross sections times branching ratio. KAPPA is an 'anomalous magnetic moment' (theoretical parameter). See text for details.
We present results from a search for anomalous WW and WZ production in ppbar collisions at sqrt(s) = 1.8 TeV. We used ppbar->evjjX events observed during the 1992-1993 run of the Fermilab Tevatron collider, corresponding to an integrated luminosity of 13.7 +- 0.7 pb^-1. A fit to the transverse momentum spectrum of the W boson yields direct limits on the CP-conserving anomalous WWgamma and WWZ coupling parameters of -0.9 < delta kappa < 1.1 (with lambda = 0) and -0.6 < lambda < 0.7 (with delta kappa = 0) at the 95% confidence level, for a form factor scale Lambda = 1.5 TeV, assuming that the WWgamma and WWZ coupling parameters are equal.
CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: g = g0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n.
We present a measurement of the forward-backward charge asymmetry of the process pp¯→Z0/γ+X,Z0/γ→e+e− at Mee>MZ, using 110pb−1 of data at s=1.8TeV collected at the Collider Detector at Fermilab. The measured charge asymmetries are 0.43±0.10 in the invariant mass region Mee>105GeV/c2, and 0.070±0.016 in the region 75
The forward-backward asymmetry resuts from angular differential cross section : D(SIG)/D(COS(THETA*) = A*(1 + COS(THETA*)**2) + B*COS(THETA*), where THETA * is the emission angle of the E- relative to the quark momentum in the rest frame of the E+ E- pair.
We analyze a sample of W + jet events collected with the Collider Detector at Fermilab (CDF) in ppbar collisions at sqrt(s) = 1.8 TeV to study ttbar production. We employ a simple kinematical variable "H", defined as the scalar sum of the transverse energies of the lepton, neutrino and jets. For events with a W boson and four or more jets, the shape of the "H" distribution deviates by 3.8 standard deviations from that expected from known backgrounds to ttbar production. However this distribution agrees well with a linear combination of background and ttbar events, the agreement being best for a top mass of 180 GeV/c^2.
A result of the study of the W + >= 4JETS data sample used in PRL 74, 2626, based on 67 pb-1 of integrated luminosity.. Different fit results due to two choices of the Q2 scale in VECBOS program (see paper).
We present a measurement of the total cross section for γγ→hadrons, with one photon quasireal and the other a spacelike photon of mass squared −Q2. Results are presented as a function of Q2 and the γγ center-of-mass energy W, with the Q2 range extending from 0.2 to 60 GeV2, and W in the range from 2 to 10 GeV. The data were taken with the TPC/Two-Gamma facility at the SLAC e+e− storage ring PEP, which was operated at a beam energy of 14.5 GeV. The cross section exhibits a gentle falloff with increasing W. Its Q2 dependence is shown to be well described by an incoherent sum of vector-meson and pointlike scattering over most of the observed W range. Agreement at high Q2 is improved if a minimum-pT cutoff (motivated by QCD) is imposed on the pointlike contribution.
Errors are statistical only.
Errors are statistical only.
Errors are statistical only.
The cross section for photoproduction of π0 mesons was measured at a photon energy of 3 GeV and squared four-momentum transfer (t) of -0.1 to -1.2 (GeV/c)2 using plane-polarized photons. The asymmetry was found to be consistent with +1.0 for t values above -0.4 and below -1.1. For −0.4<~t<~−1.0 there is a dip in the asymmetry and at t=−0.6 it drops to 0.55 ± 0.15. This result precludes a simple Regge model with ω0 and B; a theoretical description requires Regge cuts or an ω′ exchange.
No description provided.
MIT PREP (1967).