Date

Measurement of the central exclusive production of charged particle pairs in proton-proton collisions at $\sqrt{s} = 200$ GeV with the STAR detector at RHIC

The STAR collaboration Adam, Jaroslav ; Adamczyk, Leszek ; Adams, Joseph ; et al.
JHEP 07 (2020) 178, 2020.
Inspire Record 1792394 DOI 10.17182/hepdata.94264

We report on the measurement of the Central Exclusive Production of charged particle pairs $h^{+}h^{-}$ ($h = \pi, K, p$) with the STAR detector at RHIC in proton-proton collisions at $\sqrt{s} = 200$ GeV. The charged particle pairs produced in the reaction $pp\to p^\prime+h^{+}h^{-}+p^\prime$ are reconstructed from the tracks in the central detector, while the forward-scattered protons are measured in the Roman Pot system. Differential cross sections are measured in the fiducial region, which roughly corresponds to the square of the four-momentum transfers at the proton vertices in the range $0.04~\mbox{GeV}^2 < -t_1 , -t_2 < 0.2~\mbox{GeV}^2$, invariant masses of the charged particle pairs up to a few GeV and pseudorapidities of the centrally-produced hadrons in the range $|\eta|<0.7$. The measured cross sections are compared to phenomenological predictions based on the Double Pomeron Exchange (DPE) model. Structures observed in the mass spectra of $\pi^{+}\pi^{-}$ and $K^{+}K^{-}$ pairs are consistent with the DPE model, while angular distributions of pions suggest a dominant spin-0 contribution to $\pi^{+}\pi^{-}$ production. The fiducial $\pi^+\pi^-$ cross section is extrapolated to the Lorentz-invariant region, which allows decomposition of the invariant mass spectrum into continuum and resonant contributions. The extrapolated cross section is well described by the continuum production and at least three resonances, the $f_0(980)$, $f_2(1270)$ and $f_0(1500)$, with a possible small contribution from the $f_0(1370)$. Fits to the extrapolated differential cross section as a function of $t_1$ and $t_2$ enable extraction of the exponential slope parameters in several bins of the invariant mass of $\pi^+\pi^-$ pairs. These parameters are sensitive to the size of the interaction region.

47 data tables

Differential fiducial cross section for CEP of $\pi^+\pi^-$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $\pi^+$, $\pi^-$ - $p_{\mathrm{T}} > 0.2~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

Differential fiducial cross section for CEP of $K^+K^-$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $K^+$, $K^-$ - $p_{\mathrm{T}} > 0.3~\mathrm{GeV}$ - $min(p_{\mathrm{T}}(K^+), p_{\mathrm{T}}(K^-)) < 0.7~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

Differential fiducial cross section for CEP of $p\bar{p}$ pairs as a function of the invariant mass of the pair. Systematic uncertainties assigned to data points are strongly correlated between bins and should be treated as allowed collective variation of all data points. There are two components of the total systematic uncertainty. The systematic uncertainty related to the experimental tools and analysis method is labeled "syst. (experimental)". The systematic uncertainty related to the integrated luminosity (fully correlated between all data points) is labeled "syst. (luminosity)". Fiducial region definition: * central state $p$, $\bar{p}$ - $p_{\mathrm{T}} > 0.4~\mathrm{GeV}$ - $min(p_{\mathrm{T}}(p), p_{\mathrm{T}}(\bar{p})) < 1.1~\mathrm{GeV}$ - $|\eta| < 0.7$ * intact forward-scattered beam protons $p'$ - $p_x > -0.2~\mathrm{GeV}$ - $0.2~\mathrm{GeV} < |p_{y}| < 0.4~\mathrm{GeV}$ - $(p_x+0.3~\mathrm{GeV})^2 + p_y^2 < 0.25~\mathrm{GeV}^2$

More…

Measurement of the Sigma pi photoproduction line shapes near the Lambda(1405)

The CLAS collaboration Moriya, K. ; Schumacher, R.A. ; Adhikari, K.P. ; et al.
Phys.Rev.C 87 (2013) 035206, 2013.
Inspire Record 1215598 DOI 10.17182/hepdata.61398

The reaction gamma + p -> K+ + Sigma + pi was used to determine the invariant mass distributions or "line shapes" of the Sigma+ pi-, Sigma- pi+ and Sigma0 pi0 final states, from threshold at 1328 MeV/c^2 through the mass range of the Lambda(1405) and the Lambda(1520). The measurements were made with the CLAS system at Jefferson Lab using tagged real photons, for center-of-mass energies 1.95 < W < 2.85 GeV. The three mass distributions differ strongly in the vicinity of the I=0 \Lambda(1405), indicating the presence of substantial I=1 strength in the reaction. Background contributions to the data from the Sigma0(1385) and from K^* Sigma production were studied and shown to have negligible influence. To separate the isospin amplitudes, Breit-Wigner model fits were made that included channel-coupling distortions due to the NKbar threshold. A best fit to all the data was obtained after including a phenomenological I=1, J^P = 1/2^- amplitude with a centroid at 1394\pm20 MeV/c^2 and a second I=1 amplitude at 1413\pm10 MeV/c^2. The centroid of the I=0 Lambda(1405) strength was found at the Sigma pi threshold, with the observed shape determined largely by channel-coupling, leading to an apparent overall peak near 1405 MeV/c^2.

9 data tables

Invariant mass distributions of the three SIGMA-PI combinations for centre-of-mass energies, W, from 1.95 to 2.05 GeV corresponding to incident photon energies from 1.56 to 1.77 GeV.

Invariant mass distributions of the three SIGMA-PI combinations for centre-of-mass energies, W, from 2.05 to 2.15 GeV corresponding to incident photon energies from 1.77 to 1.99 GeV.

Invariant mass distributions of the three SIGMA-PI combinations for centre-of-mass energies, W, from 2.15 to 2.25 GeV corresponding to incident photon energies from 1.99 to 2.23 GeV.

More…

Observation of double charm production involving open charm in pp collisions at $\sqrt{s}$=7 TeV

The LHCb collaboration Aaij, R ; Abellan Beteta, C ; Adeva, B ; et al.
JHEP 06 (2012) 141, 2012.
Inspire Record 1113596 DOI 10.17182/hepdata.66915

The production of $J/\psi$ mesons accompanied by open charm, and of pairs of open charm hadrons are observed in pp collisions at a centre-of-mass energy of 7 TeV using an integrated luminosity of $355pb^{-1}$ collected with the LHCb detector. Model independent measurements of absolute cross-sections are given together with ratios to the measured $J/\psi$ and open charm cross-sections. The properties of these events are studied and compared to theoretical predictions.

52 data tables

Normalized differential cross-section $d\ln\sigma(pp\rightarrow J/\psi D^0 X)/dp_T(J/\psi)$ for $2<y(J/\psi)<4$, $p_T(J/\psi)<12$ GeV/$c$, $2<y(D^0)<4$, $3<p_T(D^0)<12$ GeV/$c$ region.

Normalized differential cross-section $d\ln\sigma(pp\rightarrow J/\psi D^+ X)/dp_T(J/\psi)$ for $2<y(J/\psi)<4$, $p_T(J/\psi)<12$ GeV/$c$, $2<y(D^+)<4$, $3<p_T(D^+)<12$ GeV/$c$ region.

Normalized differential cross-section $d\ln\sigma(pp\rightarrow J/\psi D_s^+ X)/dp_T(J/\psi)$ for $2<y(J/\psi)<4$, $p_T(J/\psi)<12$ GeV/$c$, $2<y(D_s^+)<4$, $3<p_T(D_s^+)<12$ GeV/$c$ region.

More…

Cascade production in the reactions gamma p --> K+ K+ (X) and gamma p --> K^+ K^+ pi- (X)

Guo, L. ; Weygand, D.P. ; Battaglieri, M. ; et al.
Phys.Rev.C 76 (2007) 025208, 2007.
Inspire Record 744487 DOI 10.17182/hepdata.31494

Photoproduction of the cascade resonances has been investigated in the reactions $\gamma p \to K^+ K^+ (X)$ and $\gamma p \to K^+ K^+ \pi^- (X)$. The mass split of the $\Xi$ doublet is measured to be $5.4\pm 1.8$ MeV/c$^2$, consistent with existing measurements. The differential (total) cross sections for the $\Xi^{-}$ have been determined for photon beam energies from 2.75 to 3.85 (4.75) GeV, and are consistent with a possible production mechanism of $Y^*\to K^+\Xi^-$ through a $t$-channel process. The reaction $\gamma p \to K^+ K^+ \pi^-[\Xi^0]$ has also been investigated in search of excited cascade resonances. No significant signal of excited cascade states other than the $\Xi^-(1530)$ is observed. The cross section results of the $\Xi^-(1530)$ have also been obtained for photon beam energies from 3.35 to 4.75 GeV.

47 data tables

Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.79 Gev.

Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.89 Gev.

Differential cross section for XI- production as a function of the invariant mass of the XI- with either of the K+ mesons for incident photon energy 2.99 Gev.

More…

Exclusive production of pion and kaon meson pairs in two photon collisions at LEP.

The ALEPH collaboration Heister, A. ; Schael, S. ; Barate, R. ; et al.
Phys.Lett.B 569 (2003) 140-150, 2003.
Inspire Record 626022 DOI 10.17182/hepdata.49730

Exclusive production of π and K meson pairs in two photon collisions is measured with ALEPH data collected between 1992 and 2000. Cross-sections are presented as a function of cos θ ∗ and invariant mass, for | cos θ ∗ |<0.6 and invariant masses between 2.0 and 6.0 GeV/ c 2 (2.25 and 4.0 GeV/ c 2 ) for pions (kaons). The shape of the distributions are found to be well described by QCD predictions but the data have a significantly higher normalization.

4 data tables

Measured angular distribution for pion production.

Measured angular distribution for kaon production.

Measured cross section for pion production as a function of W.

More…

Evidence for Structure in the 1.7-{GeV} Mass Region of the $K^+ K^-$ Final State Centrally Produced in the Reactions $\pi^+ p \to \pi^+ (K^+ K^-$) $p$ and $p p \to p (K^+ K^-$) $p$ at 85-{GeV}/$c$

The Athens-Bari-Birmingham-CERN collaboration Armstrong, T.A. ; Bloodworth, I.J. ; Carney, J.N. ; et al.
Phys.Lett.B 167 (1986) 133-137, 1986.
Inspire Record 219229 DOI 10.17182/hepdata.30285

The reactions π + p → π + (K + K − )p and pp → p(K + K − )p where the K + K − system is centrally produced have been studied at 85 GeV/ c . The K + K − spectrum contains several structures in the regions of S ∗ ø , f A 2 and f′. Structure is observed in the 1.7 GeV mass region which cannot be attributed to the g meson. The most likely interpretation of the data is that we observe the θ with a mass of 1.742 GeV and a new resonance at a mass of 1.629±0.010 GeV with a width of 0.082±0.030 GeV.

1 data table

No description provided.


Observation of a Narrow K anti-K State in J/psi Radiative Decays

The MARK-III collaboration Baltrusaitis, R.M. ; Becker, J. ; Blaylock, G. ; et al.
Phys.Rev.Lett. 56 (1986) 107, 1986.
Inspire Record 217856 DOI 10.17182/hepdata.20254

Evidence is presented for a narrow state, called ξ, in the decay modes J/ψ→γξ, ξ→K+K−, and ξ→KS0KS0. In the K+K− mode, the ξ has a mass of 2.230±0.006±0.014 GeV/c2, a width of Γ=0.026−0.016+0.020± 0.017 GeV/c2, a product branching ratio of (4.2−1.4+1.7±0.8)×10 −5, and a statistical significance of ∼4.5 standard deviations. In the KS0KS0 mode, it has a mass of 2.232±0.007±0.007 GeV/c2, a width of Γ=0.018−0.015+0.023± 0.010 GeV/c2, a product branching ratio of (3.1−1.3+1.6±0.7)×10 −5, and a statistical significance of ∼3.6 standard deviations. Limits on ξ decay to other final states are presented.

1 data table

No description provided.


NEUTRAL STRANGE PARTICLE PRODUCTION IN NEUTRINO CHARGED CURRENT INTERACTIONS AT 3-GeV TO 30-GeV

Ammosov, V.V. ; Ardashev, E.N. ; Ivanilov, A.A. ; et al.
Z.Phys.C, 1985.
Inspire Record 222758 DOI 10.17182/hepdata.10525
15 data tables

No description provided.

No description provided.

No description provided.

More…

Observation of Two Nonleading Strangeness 1 Vector Mesons

Aston, D. ; Carnegie, R.K. ; Dunwoodie, W.M. ; et al.
Phys.Lett.B 149 (1984) 258-262, 1984.
Inspire Record 201412 DOI 10.17182/hepdata.33871

We present evidence for the existence of two strange J P = 1 − mesons; one at 1410 MeV/c 2 coupling principally to K ∗ (892)π , and the other at 1790 MeV/c 2 couplingto K π , K ∗ π and ϱ K. The data derive from a partial wave analysis of the K 0 π + π − system produced in the reaction K − p → K 0 π + π − n at 11 GeV /c . The production mechanism and quark model assignment of each state are discussed. The state at 1410 MeV/c 2 most naturally understood as the first radial excitation of the K ∗ (892), and the 1790 MeV/c 2 object can be interpreted as the triplet D wave partner to the 3 − K ∗ (1780).

1 data table

No description provided.


STUDY OF K*- (890) AND K*- (1430) PRODUCTION IN THE REACTION K- P ---> ANTI-K0 PI- P AT 100-GEV/C AND 175-GEV/C

Bromberg, C. ; Dickey, J. ; Fox, G. ; et al.
Phys.Rev.D 29 (1984) 2469-2475, 1984.
Inspire Record 205297 DOI 10.17182/hepdata.23731

The reaction K−p→K¯0π−p has been studied at 100 and 175 GeV/c and the reaction π−p→K0K−p at 50, 100, and 175 GeV/c. Both reactions are dominated by production of resonances, K*(890), K*(1430) and A2(1320), A2(2040), respectively. Production cross sections, t distributions, and decay-angular distributions are studied. Isoscalar natural-parity exchange is dominant. The energy dependence of the K* and A2 resonance production between 10 and 175 GeV/c is well described by a Regge-pole model. Our data on A2 corrects that in an earlier paper.

8 data tables

No description provided.

No description provided.

No description provided.

More…