Interactions between 4.15-Bev protons and the free hydrogen nuclei in nuclear emulsion are examined. The total elastic cross section from 27 events was determined to be 11.0±2.6 mb. On the basis of 113 interactions the total inelastic cross section was found to be 28.1±3.1 mb. The partial cross sections corresponding to inelastic collisions having two, four, six, and eight secondary particles were found to be respectively 16.3±2.4, 11.5±1.8, 0.2±0.1, and 0.1±0.1 mb. While the total inelastic cross section varies slowly with energy, the partial inelastic cross sections were found to be strongly energy dependent. The observed angular distribution of elastically scattered protons in the center-of-mass system was sharply peaked in the forward and backward directions, in fair agreement with calculations based on a simple optical model applicable for energies between 2 and 10 Bev. Particles produced in inelastic collisions were identified as pions or protons by measurements of energy loss and multiple scattering. For those particles identified, center-of-mass system distributions of energy, angle, and transverse momentum are presented.
'ALL'.
The interactions of 604 MeV π− mesons in a hydrogen bubble chamber have been systematically analyzed. In 33 000 pictures a total of 8052 usable events were found, corresponding to cross sections of 18.9±1.3 mb for σ(elastic), 4.98±0.54 mb for σ(π−pπ0), 7.87±0.91 mb for σ(π−nπ+), 14.0±1.0 mb for σ(neutrals), with σ(two−pionproduction)<0.2 mb, for a total cross section of 45.9±1.9 mb at this energy. The angular distribution for elastic scattering was fitted with a fifth-order polynomial in cosθ which gave a value of dσdΩ(0°) consistent with dispersion theory. The pion-pion effective-mass distributions for both single-pion-production channels showed pronounced peaking at high mass values, strongly inconsistent with simple isobar-production kinematics. Simple one-pion exchange does not appear to play a significant role.
No description provided.
No description provided.
Results are reported on K − -neutron interactions at c.m. energies near 2 GeV. The interactions are dominated by strong production of hyperon resonances, particularly Σ(1385), Λ(1405) and Λ(1520). Production cross sections and angular distributions are given for the Σ(1385), Λ(1405) and Λ(1520) and branching fractions to decay modes observed in the experiment are given for Σ(1385) and Λ(1520). The strong energy dependence of some features of the data suggests that s -channel effects are dominant.
No description provided.
RESONANCE CROSS SECTIONS FOR <K- PI- P> FINAL STATE.
RESONANCE CROSS SECTIONS FOR <AK0 PI- N> FINAL STATE.
The differential cross section for the charge exchange p p → n n has been measured with high statistics at 7.76 GeV/ c and at 5.0 GeV/ c . The 7.76 GeV/ c data show a very narrow [ Δt ⪅ 0.01 (GeV/ c ) 2 ] forward peak superposed on a slow exponential fall-off.
No description provided.
No description provided.
INTEGRATED CROSS SECTIONS FROM EXPONENTIAL FIT.
A novel form of mass spectrometer has been used to measure the masses, widths, and cross sections of the η, ω, X0(958), and φ mesons near their respective thresholds in the reaction π−+p→missingmass+n. The incident momentum is varied in small steps through the threshold while neutrons of a given momentum are detected near zero degrees. The lower limit of the c.m. momentum P* at which measurements have been made ranges from about 50 MeV/c at the φ to about 30 MeV/c at the η. A somewhat low value for the ω mass, 782.3 ± 0.6 MeV, is found. The width of the X0 is < 1.9 MeV (95% confidence level). All four mesons show evidence of S-wave production, with values of σP* of 21.2 ± 1.8, 0.35 ± 0.03, and 0.29 ± 0.06 μb/(MeV/c) for the η, X0, and φ, respectively. A rapid rise in the ω cross section appears to be modified by a final-state interaction. The effect of this rise can probably be seen in some S11 pion-nucleon phase-shift solutions. Evidence is also presented of a sudden drop in the π+π− mass spectrum just above the threshold for the production of a K+K− pair. The paper includes a comprehensive discussion of the method and of the details of the spectrometer.
CROSS SECTIONS NEAR THRESHOLD.
We have investigated ω production in the reaction π−p→ωn very close to threshold. The dependence of the mass, width, branching ratio, and cross section upon the final-state c.m. momentum, P*, were studied. The mass and width were independent of P* with values of 782.4 ± 0.5 and 10.22 ± 0.43 MeV, respectively. The branching ratio Γ(ω→π0γ)Γ(ω→π+π−π0) was also constant, having a value of 0.084 ± 0.013. An upper limit of 0.18 was set on the branching ratio Γ(ω→π0π0γ)Γ(ω→π0γ). We observed a rapid fall in the cross section below P*=100 MeV/c. This could not be explained in terms of S-wave production alone, but could be fitted by a resonant P wave plus a noninterfering S wave.
CROSS SECTION DEPENDENCE ON FINAL STATE CENTRE OF MASS MOMENTUM. TABULATED VALUES TAKEN FROM TABLE 1 OF H. KARAMI ET AL., NP B154, 503 (1979).
We report the measurements of the inclusive μ-pair production by 150-GeV protons and π+ mesons on beryllium. Absolute cross sections as well as the Feynman-x and PT dependence are presented in the mass region between 0.211 and 3.5 GeV/c2. Upper limits are also given for the inclusive production of η and ρ′(1600) mesons.
DATA OBTAINED FROM FIGURE BY A.A. LEBEDEV.
DATA OBTAINED FROM FIGURE BY A.A. LEBEDEV.
No description provided.
Data from a study of muon pairs produced in hadron-nucleus collisions are compared with the Drell-Yan model. Comparison of dimuon production by π+ and π− mesons on an isoscalar target shows evidence for a charge asymmetry characteristic of an isospin-nonconserving electromagnetic process. The average transverse momentum of the pairs increases smoothly with pair mass. Data taken on carbon and tin targets are used to extract the dependence on target atomic weight.
No description provided.
No description provided.
We present results of a large-acceptance experiment in which muon pairs were observed in the mass range 0.6 to 6.0 GeV/c2. Emphasis is given to features of the production of Jψ and ψ′(3.7) particles. We find [Bσ]ψ′(3.7)[Bσ]Jψ to be 0.007±0.004 for p-C and 0.018±0.007 for π+-C interactions. Comparison with results from e+e− storage rings indicates that both the Jψ and the ψ′(3.7) are produced strongly rather than electromagnetically in our experiment.
No description provided.
None
THE AVERAGE PHASE IS -130.9 +- 2.7 DEG (NO EXPLICIT MOMENTUM DEPENDENCE). USING ABS(ETA+-) = 2.3*10**-3.
REGENERATION AMPLITUDE ASSUMING MOMENTUM INDEPENDENT CONSTANT PHASE.
CROSS SECTION DIFFERENCES ASSUMING MOMENTUM INDEPENDENT CONSTANT PHASE.