Results are presented of an untagged e + e − → e + e − + π + π − experiment performed at PEP with the DELCO detector. In the invariant-mass range 0.7 ⩽ W ππ < 2.0 GeV/ c 2 , the QED e + e − background is identified and eliminated, and both the π + π − predictions and the μ + μ − and K + K − background substractions are normalized to the measurement of the e e + e − events. The results agree with a simple model of superposition and interference of the f 0 (1270) resonance, produced with helicity 2, with a Born-term continuum. From a fit of the model to the data, the radiative width of the f 0 is determined to be Γ f 0 → γγ = 2.70 ± 0.21 keV.
Data read from graph.
None
DATA ARE CORRECTED FOR TWO-PHOTON AND TAU PRODUCTION EFFECTS, ACCEPTANCE AND QED RADIATIVE EFFECTS UP TO ORDER ALPHA**3. THERE IS ALSO A 6 PCT NORMALISATION ERROR NOT INCLUDED. THE OVERALL AVERAGE VALUE OF R FROM THIS DATA IS 3.88 +- 0.04 +- 0.22.
No description provided.
SEE PRL 55, 665 FOR MOST RECENT VALUES OF THE MU+ MU- CROSS SECTIONS.
The results of a high-statistics study of inclusive muon spectra at PETRA are reported. Improved mass limits have been obtained for heavy quarks, heavy leptons, and charged Higgs particles. It is shown that the fragmentation properties of b quarks and c quarks are different, with the mean fragmentation variables 〈zb〉=0.75±0.03±0.06, 〈zc〉=0.46±0.02±0.05 and the average semileptonic branching ratio for the B and C hadrons R(B)=(10.5±1.5±1.3)%, R(C)=(11.5±1.0±1.7)%.
No description provided.
No description provided.
No description provided.
The measurement of the nonelectromagnetic forward-backward charge asymmetry in the reaction e+e−→μ+μ− at s∼34.6 GeV and in the angular region 0<|cosθ|<0.8 is reported. With a systematic error less than 1%, we observe an asymmetry of (-8.1±2.1)%. This is in agreement with the standard electroweak theory prediction of (-7.6±0.6)%. The weak-current coupling constants are also reported.
SEE PRL 55, 665 FOR DISTRIBUTIONS AT 34.6 GEV AND ABOVE.
SEE PRL 55, 665 FOR CROSS SECTION VALUES AND FORWARD BACKWARD ASYMMETRY.
No description provided.