Showing 10 of 234 results
The inclusive e^+ p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA. The data were taken in 1999 and 2000 at a centre-of-mass energy of \sqrt{s} = 319 GeV and correspond to an integrated luminosity of 65.2 pb^-1. The cross sections are measured in the range of four-momentum transfer squared Q^2 between 100 and 30000 GeV^2 and Bjorken x between 0.0013 and 0.65. The neutral current analysis for the new e^+ p data and the earlier e^- p data taken in 1998 and 1999 is extended to small energies of the scattered electron and therefore to higher values of inelasticity y, allowing a determination of the longitudinal structure function F_L at high Q^2 (110 - 700 GeV^2). A new measurement of the structure function x F_3 is obtained using the new e^+ p and previously published e^\pm p neutral current cross section data at high Q^2. These data together with H1 low Q^2 precision data are further used to perform new next-to-leading order QCD analyses in the framework of the Standard Model to extract flavour separated parton distributions in the proton.
The NC cross section DSIG/DQ**2. There is an additional 1.5 PCT normalization uncertainty.
The CC cross section DSIG/DQ**2. There is an additional 1.5 PCT normalization uncertainty.
The NC cross section DSIG/DX for Q**2 > 1000 GeV**2. There is an additional 1.5 PCT normalization uncertainty.
The NC cross section DSIG/DX for Q**2 > 10000 GeV**2. There is an additional 1.5 PCT normalization uncertainty.
The CC cross section DSIG/DX for Q**2 > 1000 GeV**2. There is an additional 1.5 PCT normalization uncertainty.
The NC reduced cross section and the electromagnetic structure funcion F2 derived from the data. For Q**2 > 2000 GeV**2 the extraction of F2 is restricted to Y < 0.6.
The CC double differential cross section D2SIG/DX/DQ**2 and the structure function term PHI.
The NC structure function term PHI and the structure function FL for the E-P data.
The NC structure function term PHI and the structure function FL for the E+P data.
Breakdown of errors from table 11, F2 as a function of Q**2, X and Y. PHI(C=NC) is the NC structure function term.. Y+ = 1+(1-Y)**2. DEL(F2),DEL9F3) and DEL(FL) are the corrections to F2 as decribed in the text of the paper.
The cross section for the reaction $ e p \to e^{\prime} p \pi^{+} \pi^{-}$ was measured in the resonance region for 1.4$<$W$<$2.1 GeV and 0.5$
Measured cross section DSIG/DM(PI+PI-) for the W range 1400 to 1425GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1425 to 1450GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1450 to 1475GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1475 to 1500GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1500 to 1525GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1525 to 1550GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1550 to 1575GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1575 to 1600GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1600 to 1625GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1625 to 1650GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1650 to 1675GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1675 to 1700GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1700 to 1725GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1725 to 1750GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1750 to 1775GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1775 to 1800GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1800 to 1825GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1825 to 1850GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1850 to 1875GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1875 to 1900GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1900 to 1925GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1925 to 1950GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1950 to 1975GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 1975 to 2000GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 2000 to 2025GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 2025 to 2050GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 2050 to 2075GeV.
Measured cross section DSIG/DM(PI+PI-) for the W range 2075 to 2100GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1400 to 1425GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1425 to 1450GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1450 to 1475GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1475 to 1500GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1500 to 1525GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1525 to 1550GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1550 to 1575GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1575 to 1600GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1600 to 1625GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1625 to 1650GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1650 to 1675GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1675 to 1700GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1700 to 1725GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1725 to 1750GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1750 to 1775GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1775 to 1800GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1800 to 1825GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1825 to 1850GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1850 to 1875GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1875 to 1900GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1900 to 1925GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1925 to 1950GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1950 to 1975GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 1975 to 2000GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 2000 to 2025GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 2025 to 2050GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 2050 to 2075GeV.
Measured cross section DSIG/DM(PI+Proton) for the W range 2075 to 2100GeV.
Measured c.m. angular distribution of the PI- for the W range 1400 to 1425GeV.
Measured c.m. angular distribution of the PI- for the W range 1425 to 1450GeV.
Measured c.m. angular distribution of the PI- for the W range 1450 to 1475GeV.
Measured c.m. angular distribution of the PI- for the W range 1475 to 1500GeV.
Measured c.m. angular distribution of the PI- for the W range 1500 to 1525GeV.
Measured c.m. angular distribution of the PI- for the W range 1525 to 1550GeV.
Measured c.m. angular distribution of the PI- for the W range 1550 to 1575GeV.
Measured c.m. angular distribution of the PI- for the W range 1575 to 1600GeV.
Measured c.m. angular distribution of the PI- for the W range 1600 to 1625GeV.
Measured c.m. angular distribution of the PI- for the W range 1625 to 1650GeV.
Measured c.m. angular distribution of the PI- for the W range 1650 to 1675GeV.
Measured c.m. angular distribution of the PI- for the W range 1675 to 1700GeV.
Measured c.m. angular distribution of the PI- for the W range 1700 to 1725GeV.
Measured c.m. angular distribution of the PI- for the W range 1725 to 1750GeV.
Measured c.m. angular distribution of the PI- for the W range 1750 to 1775GeV.
Measured c.m. angular distribution of the PI- for the W range 1775 to 1800GeV.
Measured c.m. angular distribution of the PI- for the W range 1800 to 1825GeV.
Measured c.m. angular distribution of the PI- for the W range 1825 to 1850GeV.
Measured c.m. angular distribution of the PI- for the W range 1850 to 1875GeV.
Measured c.m. angular distribution of the PI- for the W range 1875 to 1900GeV.
Measured c.m. angular distribution of the PI- for the W range 1900 to 1925GeV.
Measured c.m. angular distribution of the PI- for the W range 1925 to 1950GeV.
Measured c.m. angular distribution of the PI- for the W range 1950 to 1975GeV.
Measured c.m. angular distribution of the PI- for the W range 1975 to 2000GeV.
Measured c.m. angular distribution of the PI- for the W range 2000 to 2025GeV.
Measured c.m. angular distribution of the PI- for the W range 2025 to 2050GeV.
Measured c.m. angular distribution of the PI- for the W range 2050 to 2075GeV.
Measured c.m. angular distribution of the PI- for the W range 2075 to 2100GeV.
We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.
Deep-inelastic ep scattering data taken with the H1 detector at HERA and corresponding to an integrated luminosity of 106 pb^{-1} are used to study the differential distributions of event shape variables. These include thrust, jet broadening, jet mass and the C-parameter. The four-momentum transfer Q is taken to be the relevant energy scale and ranges between 14 GeV and 200 GeV. The event shape distributions are compared with perturbative QCD predictions, which include resummed contributions and analytical power law corrections, the latter accounting for non-perturbative hadronisation effects. The data clearly exhibit the running of the strong coupling alpha_s(Q) and are consistent with a universal power correction parameter alpha_0 for all event shape variables. A combined QCD fit using all event shape variables yields alpha_s(mZ) = 0.1198 \pm 0.0013 ^{+0.0056}_{-0.0043} and alpha_0 = 0.476 \pm 0.008 ^{+0.018} _{-0.059}.
Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 14.0 to 16.0 GeV and X = 0.00841 .
Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 16.0 to 20.0 GeV and X = 0.01180 .
Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 20.0 to 30.0 GeV and X = 0.02090 .
Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 30.0 to 50.0 GeV and X = 0.04910 .
Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 50.0 to 70.0 GeV and X = 0.11600 .
Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 70.0 to 100.0 GeV and X = 0.19900 .
Normalised distribution of (1-THRUST) where THRUST is w.r.t the axis which maximises the sum of the longitudinal momenta in the current hemisphere, for Q = 100.0 to 200.0 GeV and X = 0.32300 .
Normalised distribution of (1-THRUST) where THRUST is w.r.t the vitrual photon axis, for Q = 14.0 to 16.0 GeV and X = 0.00841 .
Normalised distribution of (1-THRUST) where THRUST is w.r.t the vitrual photon axis, for Q = 16.0 to 20.0 GeV and X = 0.01180 .
Normalised distribution of (1-THRUST) where THRUST is w.r.t the vitrual photon axis, for Q = 20.0 to 30.0 GeV and X = 0.02090 .
Normalised distribution of (1-THRUST) where THRUST is w.r.t the vitrual photon axis, for Q = 30.0 to 50.0 GeV and X = 0.04910 .
Normalised distribution of (1-THRUST) where THRUST is w.r.t the vitrual photon axis, for Q = 50.0 to 70.0 GeV and X = 0.11600 .
Normalised distribution of (1-THRUST) where THRUST is w.r.t the vitrual photon axis, for Q = 70.0 to 100.0 GeV and X = 0.19900 .
Normalised distribution of (1-THRUST) where THRUST is w.r.t the vitrual photon axis, for Q = 100.0 to 200.0 GeV and X = 0.32300 .
Normalised distribution of Jet Broadening (B), for Q = 14.0 to 16.0 GeV and X = 0.00841 .
Normalised distribution of Jet Broadening (B), for Q = 16.0 to 20.0 GeV and X = 0.01180 .
Normalised distribution of Jet Broadening (B), for Q = 20.0 to 30.0 GeV and X = 0.02090 .
Normalised distribution of Jet Broadening (B), for Q = 30.0 to 50.0 GeV and X = 0.04910 .
Normalised distribution of Jet Broadening (B), for Q = 50.0 to 70.0 GeV and X = 0.11600 .
Normalised distribution of Jet Broadening (B), for Q = 70.0 to 100.0 GeV and X = 0.19900 .
Normalised distribution of Jet Broadening (B), for Q = 100.0 to 200.0 GeV and X = 0.32300 .
Normalised distribution of the squared Jet Mass (RHO), for Q = 14.0 to 16.0 GeV and X = 0.00841 .
Normalised distribution of the squared Jet Mass (RHO), for Q = 16.0 to 20.0 GeV and X = 0.01180 .
Normalised distribution of the squared Jet Mass (RHO), for Q = 20.0 to 30.0 GeV and X = 0.02090 .
Normalised distribution of the squared Jet Mass (RHO), for Q = 30.0 to 50.0 GeV and X = 0.04910 .
Normalised distribution of the squared Jet Mass (RHO), for Q = 50.0 to 70.0 GeV and X = 0.11600 .
Normalised distribution of the squared Jet Mass (RHO), for Q = 70.0 to 100.0 GeV and X = 0.19900 .
Normalised distribution of the squared Jet Mass (RHO), for Q = 100.0 to 200.0 GeV and X = 0.32300 .
Normalised distribution of the C-Parameter, for Q = 14.0 to 16.0 GeV and X = 0.00841 .
Normalised distribution of the C-Parameter, for Q = 16.0 to 20.0 GeV and X = 0.01180 .
Normalised distribution of the C-Parameter, for Q = 20.0 to 30.0 GeV and X = 0.02090 .
Normalised distribution of the C-Parameter, for Q = 30.0 to 50.0 GeV and X = 0.04910 .
Normalised distribution of the C-Parameter, for Q = 50.0 to 70.0 GeV and X = 0.11600 .
Normalised distribution of the C-Parameter, for Q = 70.0 to 100.0 GeV and X = 0.19900 .
Normalised distribution of the C-Parameter, for Q = 100.0 to 200.0 GeV and X = 0.32300 .
Mean values of the event shape variables.
Covariance matrix for (1-THRUST(C)), for Q = 14.0 to 16.0 GeV and X = 0.00841 .
Covariance matrix for (1-THRUST(C)), for Q = 16.0 to 20.0 GeV and X = 0.01180 .
Covariance matrix for (1-THRUST(C)), for Q = 20.0 to 30.0 GeV and X = 0.02090 .
Covariance matrix for (1-THRUST(C)), for Q = 30.0 to 50.0 GeV and X = 0.04910 .
Covariance matrix for (1-THRUST(C)), for Q = 50.0 to 70.0 GeV and X = 0.11600 .
Covariance matrix for (1-THRUST(C)), for Q = 70.0 to 100.0 GeV and X = 0.19900 .
Covariance matrix for (1-THRUST(C)), for Q = 100.0 to 200.0 GeV and X = 0.32300 .
Covariance matrix for (1-THRUST), for Q = 14.0 to 16.0 GeV and X = 0.00841 .
Covariance matrix for (1-THRUST), for Q = 16.0 to 20.0 GeV and X = 0.01180 .
Jet production is studied in the Breit frame in deep-inelastic positron-proton scattering over a large range of four-momentum transfers 5 < Q^2 < 15000 GeV^2 and transverse jet energies 7 < E_T < 60 GeV. The analysis is based on data corresponding to an integrated luminosity of L_int \simeq 33 pb^(-1) taken in the years 1995-1997 with the H1 detector at HERA at a center-of-mass energy sqrt(s)=300 GeV. Dijet and inclusive jet cross sections are measured multi-differentially using k_perp and angular ordered jet algorithms. The results are compared to the predictions of perturbative QCD calculations in next-to-leading order in the strong coupling constant alphas.QCD fits are performed in which alphas and the gluon density in the proton are determined separately. The gluon density is found to be in good agreement with results obtained in other analyses using data from different processes. The strong coupling constant is determined to be alphas(MZ)=0.1186+-0.0059. In addition an analysis of the data in which both alphas and the gluon density are determined simultaneously is presented.
Inclusive single jet cross section as a function of ET and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive dijet cross section as a function Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of ET and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of the di-jet mass M and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of XI (=XBJ/XP) and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of XI (=XBJ/XP) and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of XI (=XBJ/XP) and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of XI (=XBJ/XP) and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of XP and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of XP and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of XP and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of XP and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of X (=XBJ) and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of X (=XBJ) and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of X (=XBJ) and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of X (=XBJ) and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of Y (inelasticity) and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of ETAPRIME ((ETARAP(P=3)-ETARAP(P=4))/2) and ET.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of ETAPRIME ((ETARAP(P=3)-ETARAP(P=4))/2) and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of ETARAP(forward jet in lab frame) and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive di-jet cross section as a function of ETARAP(backward jet in lab frame) and Q**2.. Data are analysed in the Breit frame using the inclusive kT alogrithm.
Inclusive single jet cross section as a function of ET and Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.
Inclusive dijet cross section as a function Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.
Inclusive di-jet cross section as a function of ET and Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.
Inclusive di-jet cross section as a function of the di-jet mass M and Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.
Inclusive di-jet cross section as a function of XI (=XBJ/XP) and Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.
Inclusive di-jet cross section as a function of XI (=XBJ/XP) and Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.
Inclusive di-jet cross section as a function of XI (=XBJ/XP) and Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.
Inclusive di-jet cross section as a function of XI (=XBJ/XP) and Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.
Inclusive di-jet cross section as a function of XP and Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.
Inclusive di-jet cross section as a function of XP and Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.
Inclusive di-jet cross section as a function of XP and Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.
Inclusive di-jet cross section as a function of XP and Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.
Data are analysed in the Breit frame using the Aachen alogrithm.
Inclusive di-jet cross section as a function of X (=XBJ) and Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.
Inclusive di-jet cross section as a function of X (=XBJ) and Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.
Inclusive di-jet cross section as a function of X (=XBJ) and Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.
Inclusive di-jet cross section as a function of Y (inelasticity) and Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.
Inclusive di-jet cross section as a function of ETAPRIME ((ETARAP(P=3)-ETARAP(P=4))/2) and ET.. Data are analysed in the Breit frame using the Aachen alogrithm.
Inclusive di-jet cross section as a function of ETAPRIME ((ETARAP(P=3)-ETARAP(P=4))/2) and Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.
Data are analysed in the Breit frame using the Aachen alogrithm.
Inclusive di-jet cross section as a function of ETARAP(forward jet in lab frame) and Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.
Inclusive di-jet cross section as a function of ETARAP(backward jet in lab frame) and Q**2.. Data are analysed in the Breit frame using the Aachen alogrithm.
Inclusive dijet cross section as a function Q**2.. Data are analysed in the Breit frame using the exclusive kT alogrithm.
Inclusive di-jet cross section as a function of ET and Q**2.. Data are analysed in the Breit frame using the exclusive kT alogrithm.
Inclusive di-jet cross section as a function of the di-jet mass M and Q**2.. Data are analysed in the Breit frame using the exclusive kT alogrithm.
Inclusive di-jet cross section as a function of XI (=XBJ/XP) and Q**2.. Data are analysed in the Breit frame using the exclusive kT alogrithm.
Inclusive di-jet cross section as a function of XI (=XBJ/XP) and Q**2.. Data are analysed in the Breit frame using the exclusive kT alogrithm.
Inclusive di-jet cross section as a function of XI (=XBJ/XP) and Q**2.. Data are analysed in the Breit frame using the exclusive kT alogrithm.
Inclusive di-jet cross section as a function of XI (=XBJ/XP) and Q**2.. Data are analysed in the Breit frame using the exclusive kT alogrithm.
Inclusive di-jet cross section as a function of XP and Q**2.. Data are analysed in the Breit frame using the exclusive kT alogrithm.
Inclusive di-jet cross section as a function of XP and Q**2.. Data are analysed in the Breit frame using the exclusive kT alogrithm.
Inclusive di-jet cross section as a function of XP and Q**2.. Data are analysed in the Breit frame using the exclusive kT alogrithm.
Inclusive di-jet cross section as a function of XP and Q**2.. Data are analysed in the Breit frame using the exclusive kT alogrithm.
Inclusive di-jet cross section as a function of X (=XBJ) and Q**2.. Data are analysed in the Breit frame using the exclusive kT alogrithm.
Inclusive di-jet cross section as a function of X (=XBJ) and Q**2.. Data are analysed in the Breit frame using the exclusive kT alogrithm.
Inclusive di-jet cross section as a function of X (=XBJ) and Q**2.. Data are analysed in the Breit frame using the exclusive kT alogrithm.
Inclusive di-jet cross section as a function of X (=XBJ) and Q**2.. Data are analysed in the Breit frame using the exclusive kT alogrithm.
Inclusive di-jet cross section as a function of Y (inelasticity) and Q**2.. Data are analysed in the Breit frame using the exclusive kT alogrithm.
Inclusive di-jet cross section as a function of ETAPRIME ((ETARAP(P=3)-ETARAP(P=4))/2) and ET.. Data are analysed in the Breit frame using the exclusive kT alogrithm.
Inclusive di-jet cross section as a function of ETAPRIME ((ETARAP(P=3)-ETARAP(P=4))/2) and Q**2.. Data are analysed in the Breit frame using the exclusive kT alogrithm.
Inclusive di-jet cross section as a function of ETARAP(forward jet in lab frame) and Q**2.. Data are analysed in the Breit frame using the exclusive kT alogrithm.
Inclusive di-jet cross section as a function of ETARAP(backward jet in lab frame) and Q**2.. Data are analysed in the Breit frame using the exclusive kT alogrithm.
Inclusive dijet cross section as a function Q**2.. Data are analysed in the Breit frame using the Cambridge jet alogrithm.
Inclusive di-jet cross section as a function of ET and Q**2.. Data are analysed in the Breit frame using the Cambridge jet alogrithm.
Inclusive di-jet cross section as a function of the di-jet mass M and Q**2.. Data are analysed in the Breit frame using the Cambridge jet alogrithm.
Inclusive di-jet cross section as a function of XI (=XBJ/XP) and Q**2.. Data are analysed in the Breit frame using the Cambridge jet alogrithm.
Inclusive di-jet cross section as a function of XI (=XBJ/XP) and Q**2.. Data are analysed in the Breit frame using the Cambridge jet alogrithm.
Inclusive di-jet cross section as a function of XI (=XBJ/XP) and Q**2.. Data are analysed in the Breit frame using the Cambridge jet alogrithm.
Inclusive di-jet cross section as a function of XI (=XBJ/XP) and Q**2.. Data are analysed in the Breit frame using the Cambridge jet alogrithm.
Inclusive di-jet cross section as a function of XP and Q**2.. Data are analysed in the Breit frame using the Cambridge jet alogrithm.
Inclusive di-jet cross section as a function of XP and Q**2.. Data are analysed in the Breit frame using the Cambridge jet alogrithm.
Inclusive di-jet cross section as a function of XP and Q**2.. Data are analysed in the Breit frame using the Cambridge jet alogrithm.
Inclusive di-jet cross section as a function of XP and Q**2.. Data are analysed in the Breit frame using the Cambridge jet alogrithm.
Inclusive di-jet cross section as a function of X (=XBJ) and Q**2.. Data are analysed in the Breit frame using the Cambridge jet alogrithm.
Inclusive di-jet cross section as a function of X (=XBJ) and Q**2.. Data are analysed in the Breit frame using the Cambridge jet alogrithm.
Inclusive di-jet cross section as a function of X (=XBJ) and Q**2.. Data are analysed in the Breit frame using the Cambridge jet alogrithm.
Inclusive di-jet cross section as a function of X (=XBJ) and Q**2.. Data are analysed in the Breit frame using the Cambridge jet alogrithm.
Inclusive di-jet cross section as a function of Y (inelasticity) and Q**2.. Data are analysed in the Breit frame using the Cambridge jet alogrithm.
Inclusive di-jet cross section as a function of ETAPRIME ((ETARAP(P=3)-ETARAP(P=4))/2) and ET.. Data are analysed in the Breit frame using the Cambridge jet alogrithm.
Inclusive di-jet cross section as a function of ETAPRIME ((ETARAP(P=3)-ETARAP(P=4))/2) and Q**2.. Data are analysed in the Breit frame using the Cambridge jet alogrithm.
Inclusive di-jet cross section as a function of ETARAP(forward jet in lab frame) and Q**2.. Data are analysed in the Breit frame using the Cambridge jet alogrithm.
Inclusive di-jet cross section as a function of ETARAP(backward jet in lab frame) and Q**2.. Data are analysed in the Breit frame using the Cambridge jet alogrithm.
This analysis is based on data from neutrino and antineutrino scattering on hydrogen and deuterium, obtained with BEBC in the (anti) neutrino wideband beam of the CERN SPS. The parton momentum distrib
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
Evidence is presented for diffractive production of ρ-mesons and of ρπ-systems invp and\(\bar \nu p\) chargedcurrent interactions. In the (anti-)neutrino energy range 10 GeV
No description provided.
No description provided.
We report results for the virtual photon asymmetry $A_1$ on the nucleon from new Jefferson Lab measurements. The experiment, which used the CEBAF Large Acceptance Spectrometer and longitudinally polarized proton ($^{15}$NH$_3$) and deuteron ($^{15}$ND$_3$) targets, collected data with a longitudinally polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present paper, we concentrate on our results for $A_1(x,Q^2)$ and the related ratio $g_1/F_1(x,Q^2)$ in the resonance and the deep inelastic regions for our lowest and highest beam energies, covering a range in momentum transfer $Q^2$ from 0.05 to 5.0 GeV$^2$ and in final-state invariant mass $W$ up to about 3 GeV. Our data show detailed structure in the resonance region, which leads to a strong $Q^2$--dependence of $A_1(x,Q^2)$ for $W$ below 2 GeV. At higher $W$, a smooth approach to the scaling limit, established by earlier experiments, can be seen, but $A_1(x,Q^2)$ is not strictly $Q^2$--independent. We add significantly to the world data set at high $x$, up to $x = 0.6$. Our data exceed the SU(6)-symmetric quark model expectation for both the proton and the deuteron while being consistent with a negative $d$-quark polarization up to our highest $x$. This data setshould improve next-to-leading order (NLO) pQCD fits of the parton polarization distributions.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1300 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1500 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1700 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1900 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.2100 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.2300 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.2500 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.2700 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.2900 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3100 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3300 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3500 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3700 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.3900 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.4100 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.4300 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.4500 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.4700 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.4900 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.5100 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.5300 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.5500 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.5700 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.5900 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.6100 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.6300 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.6500 GeV.
A1 and g1/F1 for the P target at incident energy 1.6000 GeV and W = 1.1100 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.1750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.2250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.2750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.3250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.3750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.4250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.4750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.5250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.5750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.6250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.6750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.7250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.7750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.8250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.8750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.9250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.9750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.0250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.0750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.1250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.1750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.2250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.2750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.3250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.3750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.4250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.4750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.5250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.5750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.6250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.6750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.7250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.7750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.8250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.8750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.9250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 2.9750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 3.0250 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 3.0750 GeV.
A1 and g1/F1 for the P target at incident energy 5.7000 GeV and W = 1.1250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.0850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.0850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.0950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.0950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.1950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.1950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.2950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.2950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.3950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.3950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.4950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.4950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.5950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.5950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.6950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.6950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.7050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.7150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.7250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 1.6000 GeV and W = 1.7350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.7950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.8950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 1.9950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.0950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.1950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.2950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.3950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.4950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.5950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.6950 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7050 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7150 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7250 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7350 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7450 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7550 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7650 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7750 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7850 GeV.
A1 and g1/F1 for the DEUT target at incident energy 5.7000 GeV and W = 2.7950 GeV.
The ep -> e'pi^+n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV^2 < Q^2 < 0.65 GeV^2 range using the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time the absolute cross sections were measured covering nearly the full angular range in the hadronic center-of-mass frame. The structure functions sigma_TL, sigma_TT and the linear combination sigma_T+epsilon*sigma_L were extracted by fitting the phi-dependence of the measured cross sections, and were compared to the MAID and Sato-Lee models.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.11 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.13 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.15 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.17 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.19 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.21 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.23 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.25 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.27 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.29 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.31 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.33 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.35 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.37 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.39 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.41 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.43 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.45 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.47 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.49 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.51 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.53 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.55 GeV.
Structure functions for Q**2 = 0.30 GeV**2 and W = 1.57 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.11 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.13 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.15 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.17 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.19 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.21 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.23 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.25 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.27 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.29 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.31 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.33 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.35 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.37 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.39 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.41 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.43 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.45 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.47 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.49 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.51 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.53 GeV.
Structure functions for Q**2 = 0.40 GeV**2 and W = 1.55 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.11 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.13 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.15 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.17 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.19 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.21 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.23 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.25 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.27 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.29 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.31 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.33 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.35 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.37 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.39 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.41 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.43 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.45 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.47 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.49 GeV.
Structure functions for Q**2 = 0.50 GeV**2 and W = 1.51 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.11 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.13 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.15 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.17 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.19 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.21 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.23 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.25 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.27 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.29 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.31 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.33 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.35 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.37 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.39 GeV.
Structure functions for Q**2 = 0.60 GeV**2 and W = 1.41 GeV.
Cross sections for W = 1.11 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.11 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.13 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.15 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.17 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.19 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.21 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.23 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.25 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.27 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.29 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.31 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.33 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.35 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.37 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.39 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.41 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.43 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.45 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.47 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.49 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.51 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.53 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.55 GeV**2 and THETA = 157.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 7.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 22.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 37.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 52.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 67.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 82.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 97.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 112.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 127.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 142.5 deg.
Cross sections for W = 1.57 GeV**2 and THETA = 157.5 deg.
Inclusive electron scattering off the deuteron has been measured to extract the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement covers the entire resonance region from the quasi-elastic peak up to the invariant mass of the final-state hadronic system W~2.7 GeV with four-momentum transfers Q2 from 0.4 to 6 (GeV/c)^2. These data are complementary to previous measurements of the proton structure function F2 and cover a similar two-dimensional region of Q2 and Bjorken variable x. Determination of the deuteron F2 over a large x interval including the quasi-elastic peak as a function of Q2, together with the other world data, permit a direct evaluation of the structure function moments for the first time. By fitting the Q2 evolution of these moments with an OPE-based twist expansion we have obtained a separation of the leading twist and higher twist terms. The observed Q2 behaviour of the higher twist contribution suggests a partial cancellation of different higher twists entering into the expansion with opposite signs. This cancellation, found also in the proton moments, is a manifestation of the duality phenomenon in the F2 structure function.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
No description provided.
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.