Hadronic Z decay data taken with the ALEPH detector at LEP1 are used to measure the three-jet rate as well as moments of various event-shape variables. The ratios of the observables obtained from b-tagged events and from an inclusive sample are determined. The mass of the b quark is extracted from a fit to the measured ratios using a next-to-leading order prediction including mass effects. Taking the first moment of the y3 distribution, which is the observable with the smallest hadronization corrections and systematic uncertainties, the result is: mb(MZ) = [3.27+-0.22(stat) +-0.22(exp)+-0.38(had)+-0.16(theo)] GeV/c2. The measured ratio is alternatively employed to test the flavour independence of the strong coupling constant for b and light quarks.
No description provided.
The measurements of Rb = sigma(e+e- -> bb~)/sigma(e+e- -> qq~) and of the b quark forward-backward charge asymmetry, A^b_fb, at centre-of-mass energies above the Z pole are described. The measurement of Rb is performed at \root{s} between 130 and 189 GeV using a b-tagging method that exploits the relatively large decay length of b-hadrons. The measurement of A^b_fb is performed using the large statistics event sample collected at \root{s}=189 GeV with a lepton-tag analysis based on the selection of prompt muons and electrons. The results at \root{s}=189 GeV are: Rb = 0.163 +/- 0.013 (stat.) +/- 0.005 (syst.), A^b_fb = 0.61 +/- 0.18 (stat.) +/- 0.09 (syst.).
No description provided.
No description provided.
The DELPHI detector at LEP has collected 54 pb^{-1} of data at a centre-of-mass energy around 183 GeV during 1997, 158 pb^{-1} around 189 GeV during 1998, and 187 pb^{-1} between 192 and 200 GeV during 1999. These data were used to measure the average charged particle multiplicity in e+e- -> b bbar events, <n>_{bb}, and the difference delta_{bl} between <n>_{bb} and the multiplicity, <n>_{ll}, in generic light quark (u,d,s) events: delta_{bl}(183 GeV) = 4.55 +/- 1.31 (stat) +/- 0.73 (syst) delta_{bl}(189 GeV) = 4.43 +/- 0.85 (stat) +/- 0.61 (syst) delta_{bl}(200 GeV) = 3.39 +/- 0.89 (stat) +/- 1.01 (syst). This result is consistent with QCD predictions, while it is inconsistent with calculations assuming that the multiplicity accompanying the decay of a heavy quark is independent of the mass of the quark itself.
Only statistical errors.
No description provided.
A measurement of the forward--backward asymmetry of $e^{+}e^{-} \to c\bar{c}$ and $e^{+}e^{-} \to b\bar{b}$ on the $Z$ resonance is performed using about 3.5 million hadronic $Z$ decays collected by the DELPHI detector at LEP in the years 1992 to 1995. The heavy quark is tagged by the exclusive reconstruction of several $D$ meson decay modes. The forward--backward asymmetries for $c$ and $b$ quarks at the $Z$ resonance are determined to be: \[ \renewcommand{\arraystretch}{1.6} \begin{array}{rcr@{}l} \Afbc(\sqrt{s} = 91.235 {\rm GeV}) &=& &0.0659 \pm 0.0094 (stat) \pm 0.0035 (syst) \Afbb (\sqrt{s} = 91.235 {\rm GeV}) &=& &0.0762 \pm 0.0194 (stat) \pm 0.0085 (syst) \Afbc(\sqrt{s} = 89.434 {\rm GeV}) &=&-&0.0496 \pm 0.0368 (stat) \pm 0.0053 (syst) \Afbb(\sqrt{s} = 89.434 {\rm GeV}) &=& &0.0567 \pm 0.0756 (stat) \pm 0.0117 (syst) \Afbc(\sqrt{s} = 92.990 {\rm GeV}) &=& &0.1180 \pm 0.0318 (stat) \pm 0.0062 (syst) \Afbb(\sqrt{s} = 92.990 {\rm GeV}) &=& &0.0882 \pm 0.0633 (stat) \pm 0.0122 (syst) \end{array} \] The combination of these results leads to an effective electroweak mixing angle of: SINEFF = 0.2332 \pm 0.0016
No description provided.
The transverse, longitudinal and asymmetric components of the fragmentation function are measured from the inclusive charged particles produced in$e^+e^-$collisi
Transverse component of the differential cross section.
Longitudinal component of the differential cross section.
Asymmetric component of the differential cross section.
The production rates of D^*+/- mesons in charm and bottom events at centre-of-mass energies of about 91 GeV and the partial width of primary cc(bar) pairs in hadronic Z^0 decays have been measured at LEP using almost 4.4 million hadronic Z^0 decays collected with the OPAL detector between 1990 and 1995. Using a combination of several charm quark tagging methods based on fully and partially reconstructed D^*+/- mesons, and a bottom tag based on identified muons and electrons, the hadronisation fractions of charm and bottom quarks into D^*+/- mesons have been found to be: f(b -> D^*+ X) = 0.173 +/- 0.016 +/- 0.012 and f(c -> D^*+ X) = 0.222 +/- 0.014 +/- 0.014 The fraction of cc(bar) events in hadronic Z^0 decays, Gamma_cc(bar)/Gamma_had = Gamma(Z^0 -> cc(bar))/Gamma(Z^0 -> hadrons), is determined to be Gamma_cc(bar)/Gamma_had = 0.180 +/- 0.011 +/- 0.012 +/- 0.006 In all cases the first error is statistical, and the second one systematic. The last error quoted for Gamma_cc(bar)/Gamma_had is due to external branching ratios.
No description provided.
No description provided.
The second syst. errors results due to extranal branching ratios. Charge conjugated states are implied. FD is considered as a quark fragmentation fraction. Sqrt(s(E+ E-)) = 91.2 GeV.
Production of events with hadronic and leptonic final states has been measured in e^+e^- collisions at centre-of-mass energies of 130-172 GeV, using the OPAL detector at LEP. Cross-sections and leptonic forward-backward asymmetries are presented, both including and excluding the dominant production of radiative Z \gamma events, and compared to Standard Model expectations. The ratio R_b of the cross-section for bb(bar) production to the hadronic cross-section has been measured. In a model-independent fit to the Z lineshape, the data have been used to obtain an improved precision on the measurement of \gamma-Z interference. The energy dependence of \alpha_em has been investigated. The measurements have also been used to obtain limits on extensions of the Standard Model described by effective four-fermion contact interactions, to search for t-channel contributions from new massive particles and to place limits on chargino pair production with subsequent decay of the chargino into a light gluino and a quark pair.
SIG(C=MEAS) and SIG(C=CORR) stand for measured values without (C=MEAS) and with (C=CORR) correction for interference between initial- and final-state radiation.
The angular distribution of the thrust axis. Errors include statistical and systematic effects combined, with the former dominant.
The measured values include the effect of interference between initial- andfinal-state radiation.
The hadronic fragmentation functions of the various quark flavours and of gluons are measured in a study of the inclusive hadron production from Z 0 decays with the DELPHI detector and are compared with the fragmentation functions measured elsewhere at energies between 14 GeV and 91 GeV. A large scaling violation is observed, which is used to extract the strong coupling constant from a fit using a numerical integration of the second order DGLAP evolution equations. The result is α s ( M Z ) = 0.124 −0.007 +0.006 (exp) ± 0.009(theory) where the first error represents the experimental uncertainty and the second error is due to the factorization and renormalization scale dependence.
SIG(Q=BQ, Q=CQ, Q=UDS) corresponds to BQ, CQ, and U,D,S quarks fragmentation into charged hadron.
alpha_s was evaluated from the scaling violation of the fragmentation func tions. The data from other experiments are used for the fitting procedure.
This paper describes an update of the double tagging measurement of the fraction, Rb, of Z0 → bb̅ events in hadronic Z0 decays, with statistics improved by including the data collected in 1994. The presence of electrons or muons from semileptonic decays of bottom hadrons and the detection of bottom hadron decay vertices were used together to obtain an event sample enriched in Z0 → bb̅ decays. The efficiency of the bb̅ event tagging was obtained from the data by comparing the numbers of events having a bottom signature in either one or both thrust hemispheres. Efficiency correlations between opposite event hemispheres are small (< 0.5%) and well understood through comparisons between the real and simulated data samples. A value of Rb= 0.2175 ± 0.0014 ± 0.0017 was obtained, where the first error is statistical and the second systematic. The uncertainty on the decay width Γ(Z0 → cc̅) is not included in these errors. The result depends on Rc as follows: $${⩼ Delta R_{⤪ b}⩈er R_{⤪ b}}=-0.084{⩼ Delta R_{⤪ c}⩈er R_{⤪ c}},$$ where ΔRc is the deviation of Rc from the value 0.172 predicted by the Standard Model.
No description provided.
The B<sup loc="post">0</sup> - B̄<sup loc="post">0</sup> average mixing parameter <math altimg="si1.gif"><rm><ovl type="bar" style="s">χ</ovl></rm></math> and b forward-backward asymmetry AFB<sup loc="post">0</sup>(b) are measured from a sample of about 4 200 000 Z → qq̄ events recorded with the ALEPH detector at LEP in the years 1990–1995. High transverse momentum electrons and muons produced in b semileptonic decays provide the tag of the quark flavour and of its charge. The average mixing parameter and the pole b asymmetry are measured to be <math altimg="si1.gif"><rm><ovl type="bar" style="s">χ</ovl></rm></math> = 0.1246 ± 0.0051stat ± 0.0052syst, AFB<sup loc="post">0</sup>(b) = 0.1008 ± 0.0043stat ± 0.0028syst. The value of sin<sup loc="post">2</sup>θw<sup loc="post">eff</sup> = 0.23198 ± 0.00092 is extracted from the asymmetry measurement.
ASYM(N=FB,C=OBSERVED) is observed asymmetry including BQ, CQ and backround.
No description provided.