SEARCH FOR NARROW QUARKONIUM STATES AND PAIR PRODUCTION OF NEW HEAVY QUARKS AT c.m. ENERGIES FROM 33-GeV TO 36.7-GeV

The CELLO collaboration Behrend, H.J. ; Chen, Ch. ; Field, J.H. ; et al.
DESY-81-029, 1981.
Inspire Record 166365 DOI 10.17182/hepdata.45222

None

0 data tables match query

Inclusive Sigma- and Lambda(1520) production in hadronic Z decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 475 (2000) 429-447, 2000.
Inspire Record 524694 DOI 10.17182/hepdata.49984

Production of Sigma- and Lambda(1520) in hadronic Z decays has been measured using the DELPHI detector at LEP. The Sigma- is directly reconstructed as a charged track in the DELPHI microvertex detector and is identified by its Sigma -> n pi decay leading to a kink between the Sigma- and pi-track. The reconstruction of the Lambda(1520) resonance relies strongly on the particle identification capabilities of the barrel Ring Imaging Cherenkov detector and on the ionisation loss measurement of the TPC. Inclusive production spectra are measured for both particles. The production rates are measured to be <N_{Sigma-}/N_{Z}^{had}> = 0.081 +/- 0.002 +/- 0.010, <N_{Lambda(1520)}/N_{Z}^{had}> = 0.029 +/- 0.005 +/- 0.005. The production rate of the Lambda(1520) suggests that a large fraction of the stable baryons descend from orbitally excited baryonic states. It is shown that the baryon production rates in Z decays follow a universal phenomenological law related to isospin, strangeness and mass of the particles.

0 data tables match query

The Hadronic Cross-section of Electron - Positron Annihilation at 9.5-{GeV} and the $\Upsilon$ and $\Upsilon^\prime$ Resonance Parameters

Albrecht, H. ; Childers, R. ; Darden, C.W. ; et al.
Phys.Lett.B 116 (1982) 383-386, 1982.
Inspire Record 178613 DOI 10.17182/hepdata.30881

The reaction e + e − → hadrons has been measured in the ϒ and ϒ′ region using the DASP detector at the DESY storage ring DORIS. The following final results are obtained: R had (9.5 GeV)=3.73±0.16±0.28, Γ ee ( ϒ )=(1.23 ± 0.08 ± 0.12) keV, B μμ ( ϒ )=(3.2±1.3±0.3)%, Γ ee Γ had Γ tot (ϒ′)=(0.55±0.11 ±0.06) keV , and M ( ϒ ′)− M ( ϒ )=(556 ±10) MeV.

0 data tables match query

Measurement of the Total Hadronic Cross-section in $e^+ e^-$ Annihilation at $\sqrt{s}=29$-{GeV}

The MARK-II collaboration Von Zanthier, Christoph ; de Boer, W. ; Grindhammer, Guenter ; et al.
Phys.Rev.D 43 (1991) 34-45, 1991.
Inspire Record 295286 DOI 10.17182/hepdata.22852

A precise measurement of the ratio R of the total cross section e+e−→hadrons to the pointlike cross section e+e−→μ+μ− at a center-of-mass energy of 29.0 GeV is presented. The data were taken with the upgraded Mark II detector at the SLAC storage ring PEP. The result is R=3.92±0.05±0.09. The luminosity has been determined with three independent luminosity monitors measuring Bhabha scattering at different angular intervals. Recent calculations of higher-order QED radiative corrections are used to estimate the systematic error due to missing higher-order radiative corrections in the Monte Carlo event generators.

0 data tables match query

Measurement of inclusive rho0, f0(980), f2(1270), K*2(1430)0 and f'2(1525) production in Z0 decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 449 (1999) 364-382, 1999.
Inspire Record 482816 DOI 10.17182/hepdata.49345

DELPHI results are presented on the inclusive production of the neutral mesons ρ 0 , f 0 (980), f 2 (1270), K ∗0 2 (1430) and f ′ 2 (1525) in hadronic Z 0 decays. They are based on about 2 million multihadronic events collected in 1994 and 1995, using the particle identification capabilities of the DELPHI Ring Imaging Cherenkov detectors and measured ionization losses in the Time Projection Chamber. The total production rates per hadronic Z 0 decay have been determined to be: 1.19±0.10 for ρ 0 ; 0.164±0.021 for f 0 (980); 0.214±0.038 for f 2 (1270); 0.073±0.023 for K ∗0 2 (1430) ; and 0.012±0.006 for f ′ 2 (1525). The total production rates for all mesons and differential cross-sections for the ρ 0 , f 0 (980) and f 2 (1270) are compared with the results of other LEP experiments and with models.

0 data tables match query

Search for New Heavy Quarks in $e^+ e^-$ Collisions Up to 46.78-{GeV} Center-of-mass Energy

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 144 (1984) 297-301, 1984.
Inspire Record 202783 DOI 10.17182/hepdata.30514

The total e + e − annihilation onto hadron has been measured at CM energies between 33.00 and 36.72 GeV and between 38.66 and 46.78 GeV in steps of 20 and 30 MeV respectively. The average of the ratio R = σ ( e + e − → hadrons )/ σ is 〈 R 〉=3.85±0.12 and 〈 R 〉=4.04±0.10 for the two energy ranges. The systematic error on 〈 R 〉 is 0.31. Both values are consistent with the expectation for the known coloured quarks u, d, s, c and b. No evidence was found for the production of new quarks. If the largest fluctuation in R is interpreted as a narrow resonance, it corresponds to a product of the electronic width and the hadronic branching ratio Γ ee B had >2.9 keV at the 95% confidence level, well below the value expected for the toponium vector ground state with charge 2 3 e . The observed number of aplanar final states rules out the continuum production of a a new heavy flavour with pointlike cross section up to a CM energy of 45.4 GeV for a quarck charge of 1 3 e . and up to 46.6 GeV for 2 3 e at the 95% confidence level.

0 data tables match query

Measurement of R and determination of the charged particle multiplicity in e+ e- annihilation at s**(1/2) around 10-GeV

The ARGUS collaboration Albrecht, H. ; Ehrlichmann, H. ; Hamacher, T. ; et al.
Z.Phys.C 54 (1992) 13-20, 1992.
Inspire Record 319102 DOI 10.17182/hepdata.14708

We have measured theR value in non-resonante+e− annihilation using the ARGUS detector at the storage ring DORIS II. At a centre-of-mass energy\(\sqrt s= 9.36\) GeV the ratio of the hadronic cross-section to the μ-pair cross section in lowest order QED has been determined to beR=3.46±0.03±0.13. In addition, we have measured the charged-particle multiplicities in non-resonant hadron production at\(\sqrt s= 10.47\) GeV just below theB\(\bar B\) threshold and in ϒ (4S) resonance decays. For the average charged-particle multiplicities in continuum events and ϒ(4S)→B\(\bar B\) decays we obtain <n>cont=8.35±0.02±0.20 and <n>ϒ(4s)=10.81±0.05±0.23.

0 data tables match query

A Comparison of jet production rates on the Z0 resonance to perturbative QCD

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 247 (1990) 167-176, 1990.
Inspire Record 297698 DOI 10.17182/hepdata.29653

The production rates for 2-, 3-, 4- and 5-jet hadronic final states have been measured with the DELPHI detector at the e + e − storage ring LEP at centre of mass energies around 91.5 GeV. Fully corrected data are compared to O(α 2 s ) QCD matrix element calculations and the QCD scale parameter Λ MS is determined for different parametrizations of the renormalization scale ω 2 . Including all uncertainties our result is α s ( M 2 Z )=0.114±0.003[stat.]±0.004[syst.]±0.012[theor.].

0 data tables match query

A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP.

The DELPHI collaboration Abdallah, J. ; Abreu, P. ; Adam, W. ; et al.
Eur.Phys.J.C 29 (2003) 285-312, 2003.
Inspire Record 620250 DOI 10.17182/hepdata.13029

Infrared and collinear safe event shape distributions and their mean values are determined in e+e- collisions at centre-of-mass energies between 45 and 202 GeV. A phenomenological analysis based on power correction models including hadron mass effects for both differential distributions and mean values is presented. Using power corrections, alpha_s is extracted from the mean values and shapes. In an alternative approach, renormalisation group invariance (RGI) is used as an explicit constraint, leading to a consistent description of mean values without the need for sizeable power corrections. The QCD beta-function is precisely measured using this approach. From the DELPHI data on Thrust, including data from low energy experiments, one finds beta_0 = 7.86 +/- 0.32 for the one loop coefficient of the beta-function or, assuming QCD, n_f = 4.75 +/- 0.44 for the number of active flavours. These values agree well with the QCD expectation of beta_0=7.67 and n_f=5. A direct measurement of the full logarithmic energy slope excludes light gluinos with a mass below 5 GeV.

0 data tables match query

Determination of alpha-s and sin**2theta(w) from Measurements of the Total Hadronic Cross-Section in e+ e- Annihilation

The CELLO collaboration Behrend, H.J. ; Burger, J. ; Criegee, L. ; et al.
Phys.Lett.B 183 (1987) 400-411, 1987.
Inspire Record 236981 DOI 10.17182/hepdata.30231

We have measured the total normalized cross section R for the process e + e − → hadrons at centre-of-mass energies between 14.0 and 46.8 GeV based on an integrated luminosity of 60.3 pb −1 . The data are well described by the standard SU(3) c ⊗SU(2) L ⊗U(1) model with the production of the five known quarks. No open production of a sixth quark with charge 2/3 or 1/3 occurs below a centre-of-mass energy of 46.6 or 46.3 GeV, respectively. A fitting procedure which takes the correlations between measurements into account was used to determine the electroweak mixing angle sin 2 θ w and the strong coupling constant α s ( S ) in second-order QCD. We applied this procedure to the CELLO data and in addition included the data from other experiments at PETRA and PEP. Both fits give consistent results. The fit to the combined data yields α s (34 2 GeV 2 ) = 0.165±0.030, and sin 2 θ w = 0.236±0.020. Fixing sin 2 θ w at the world average value of 0.23 yields α s (34 2 GeV 2 ) = 0.169±0.025.

0 data tables match query