Coincidence studies performed in 4π geometry with silicon detectors and parallel plate avalanche counters have been used to measure total fission cross sections of238U,232Th,209Bi,208Pb,197Au,natYb,natHo,natTb,natSm,natTe,natAg andnatNi nuclei induced by 1 GeV protons. The experimental results agree qualitatively with cascade-evaporation calculations.
No description provided.
A search for narrow resonances in e + e − annihilation between 33.00 and 36.72 GeV is reported. No evidence is found for the existence of such states. The 90% confidence upper limit on the integrated resonance cross section is determined to be 28 nb MeV, a value significantly below that expected for the lowest t t bound state.
AVERAGE R VALUE THROUGHOUT ENERGY RANGE. SYSTEMATIC ERROR IS CONSERVATIVE AND WILL BE IMPROVED.
R VALUES AT 20 MEV STEPS. DATA TAKEN FROM TABLE IN THE PREPRINT.
Diffractive production of the 3 π system has been studied at 63 and 94 GeV using a two magnet spectrometer with high, uniform acceptance. The total number of events used in the analysis is ∼600 000. The A 2 meson is shown to be diffractively produced. The existence of a resonant component in both the 1 + and 2 − enhancements is established and resonance parameters for the corresponding A 1 and A 3 mesons are given. There are several indications in the data of states which would correspond to radial excitations in the quark model.
SEE C. DAUM ET AL., PL 89B, 276 (1980) (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+486> RED = 486 </a>), AND THE RECORD (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+420> RED = 420 </a>) OF THE GENEVA CONFERENCE PREPRINT, B. ALPER ET AL. (1979).
SEE C. DAUM ET AL., PL 89B, 281 (1980) (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+487> RED = 487 </a>), AND THE RECORD (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+419> RED = 419 </a>) OF THE GENEVA CONFERENCE PREPRINT, G. THOMPSON ET AL. (1979).
SEE C. DAUM ET AL., PL 89B, 285 (1980) (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+488> RED = 488 </a>), AND THE RECORD (<a href=http://durpdg.dur.ac.uk/scripts/reacsearch.csh/TESTREAC/red+421> RED = 421 </a>) OF THE GENEVA CONFERENCE PREPRINT, B. ALPER ET AL. (1979).
The processes e + e − → e + e − and μ + μ − have been studied at PETRA using the JADE detector. The data, which were collected at s -values of up to 1300 GeV 2 have been analysed in terms of an electro-weak extension of QED to obtain values for the weak vector and axial vector couplings in the lepton sector. The values obtained agree with the predictions of the standard Salam-Weinberg model and the data are further analysed in terms of this model to obtain the limits 0.10 < sin 2 ϑ w < 0.40 (68% CL). The mass of the neutral weak gauge boson is deduced to be greater than 51 GeV/ c 2 .
No description provided.
No description provided.
No description provided.
Samples of 9200 muon-neutrino and 3800 muon-antineutrino interactions on nuclei were obtained with the fine-grain calorimeter of the CHARM Collaboration at the CERN 200 GeV narrow-band neutrino beam. The interactions were classified as either neutral-current or charged-current processes on an event-by-event basis. Neutral-current and charged-current cross sections in neutrino and antineutrino interactions are presented. From these results we deduce a statistically significant contribution of right-handed coupling to the neutral hadronic current, and a value of the electroweak mixing angle corresponding to sin 2 θ = 0.220 ± 0.014.
Measured charged current total cross section.
Measured charged current total cross section.
No description provided.
None
INCLUDING SYSTEMATIC ERRORS.
STATISTICAL ERRORS ONLY.
STATISTICAL ERRORS ONLY.
The differential cross sections for Bhabha scattering and μ pair production, and the total τ pair cross section as measured by the PLUTO detector at PETRA, have been analyzed to extract information on the weak interaction of leptons. The data are compared with unified gauge theories. Since the observed electroweak effects are still consistent with zero (within errors) we can set experimental limits on neutral current parameters atQ2 values of 950 GeV2. In the framework of the standard SU(2)×U(1) model we find sin2Θw<0.52(95% c.l.). In the context of general singleZo models we can excludeZo masses of less than 40 GeV.
No description provided.
No description provided.
Data are presented from a high statistics bubble chamber experiment to K − p interactions over the c.m. energy range 1720 to 1796 MeV. Channel cross sections, differential cross sections and, where appropriate, polarisation distributions have been obtained for the final states K − p , K 0 n , π 0 Λ and π ± Σ ∓ . These data are compared with those from previously published experiments and with the predictions from the RL-IC 77 partial-wave amplitudes for each of these channels.
No description provided.
No description provided.
EXTRAPOLATED FORWARD AND BACKWARD DIFFERENTIAL CROSS SECTIONS.
Measurements of energy-energy correlations in hadronic final states produced in e + e − annihilation at c.m. energies between 7.7 and 31.6 GeV are presented. The data are compared to perturbative QCD predictions. Good qualitative agreement above 20 GeV c.m. energy is found. The importance of non-perturbative effects is discussed, as well as the detailed behaviour of the correlation near 180°.
No description provided.
OPPOSITE SIDE ENERGY-ENERGY CORRELATIONS NEAR 180 DEG.
ENERGY-ENERGY CORRELATION INTEGRATED IN THE REGION 60 TO 120 DEG.
We report on the results of a partial-wave analysis of the 3π system produced by baryon exchange in the reaction K − p→ Σ − π + π + π − at 4.2 GeV/ c . We confirm the existence of an enhancement in the 1 + S( ϱπ ) wave as previously established from a Dalitz plot analysis of the same data. The phase variation of this wave is found to be consistent with that expected for a resonance and thus the enhancement is identified with A 1 production. No clear signal for this state is found in either the reaction K − p→ Σ + π + π + π − π − or K − p→ Λπ + π − π 0 . We also find production via baryon exchange of the A 2 in all three reactions and the ω and ω ∗ (1975) in the third reaction.
SIMPLE BREIT-WIGNER RESONANCE FITS. CORRECTED FOR UNOBSERVED DECAY MODES.
No description provided.