Date

The Q**2 evolution of the hadronic photon structure function F2(gamma) at LEP.

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 447 (1999) 147-156, 1999.
Inspire Record 479052 DOI 10.17182/hepdata.49323

New measurements at a centre-of-mass energy s ≃183 GeV of the hadronic photon structure function F γ 2 ( x ) in the Q 2 interval, 9 GeV 2 ≤ Q 2 ≤30 GeV 2 , are presented. The data, collected in 1997 with the L3 detector, correspond to an integrated luminosity of 51.9 pb −1 . Combining with the data taken at a centre-of-mass energy of 91 GeV, the evolution of F γ 2 with Q 2 is measured in the Q 2 range from 1.2 GeV 2 to 30 GeV 2 . F γ 2 shows a linear growth with ln Q 2 ; the value of the slope α −1 d F γ 2 ( Q 2 )/dln Q 2 is measured in two x bins from 0.01 to 0.2 and is somewhat higher than predicted.

1 data table

Measured values of F2/ALPHA as a function of x. The second systematic error (DSYS) is that due to the model dependence and is the difference between the results obtained with PHOJET and TWOGAM. The full systematic error is the quadrature sum of the two systematic errors.


Comparison of Lambda and Sigma0 threshold production in proton proton collisions.

Sewerin, S. ; Schepers, G. ; Balewski, J.T. ; et al.
Phys.Rev.Lett. 83 (1999) 682-685, 1999.
Inspire Record 478929 DOI 10.17182/hepdata.42059

Threshold measurements of the associated strangeness production reactions pp --> p K(+) Lambda and pp --> p K(+) Sigma(0) are presented. Although slight differences in the shapes of the excitation functions are observed, the most remarkable feature of the data is that at the same excess energy the total cross section for the Sigma(0) production appears to be about a factor of 28 smaller than the one for the Lambda particle. It is concluded that strong Sigma(0)-p final state interactions, and in particular the Sigma-N --> Lambda-p conversion reaction, are the likely cause of the depletion for the yield in the Sigma signal. This hypothesis is in line with other experimental evidence in the literature.

1 data table

The given errors are statistical only. The cross section presented as a function of the nominal excess energy.


Inclusive charm production in two-photon collisions at LEP.

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 453 (1999) 83-93, 1999.
Inspire Record 481163 DOI 10.17182/hepdata.49252

The cross section of charm production in γγ collisions σ(e + e − →e + e − c c ̄ X) is measured at LEP with the L3 detector at centre-of-mass energies from 91 GeV to 183 GeV. Charmed hadrons are identified by electrons and muons from semileptonic decays. The direct process γγ→c c ̄ is found to be insufficient to describe the data. The measured cross section values and event distributions require contributions from resolved processes, which are sensitive to the gluon density in the photon.

1 data table

Total cross section for inclusive charm production.


Measurement of internal jet structure in dijet production in deep inelastic scattering at HERA

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Nucl.Phys.B 545 (1999) 3-20, 1999.
Inspire Record 482053 DOI 10.17182/hepdata.32577

Internal jet structure in dijet production in deep-inelastic scattering is measured with the H1 detector at HERA. Jets with transverse energies ET,Breit > 5 GeV are selected in the Breit frame employing k_perp and cone jet algorithms. In the kinematic region of squared momentum transfers 10 < Q2 <~ 120 GeV2 and x-Bjorken values 2.10^-4 <~ xBj <~ 8.10^-3, jet shapes and subjet multiplicities are measured as a function of a resolution parameter. Distributions of both observables are corrected for detector effects and presented as functions of the transverse jet energy and jet pseudo-rapidity. Dependences of the jet shape and the average number of subjets on the transverse energy and the pseudo-rapidity of the jet are observed. With increasing transverse jet energies and decreasing pseudo-rapidities, i.e.towards the photon hemisphere, the jets are more collimated. QCD models give a fair description of the data.

24 data tables

The dependence of the jet shapes on the transverse jet energy ET in the pseudorapidity range < 1.5 and the ET range 5 TO 8 GeV using the inclusive KT jet finding algorithm.

The dependence of the jet shapes on the transverse jet energy ET in the pseudorapidity range 1.5 TO 2.2 and the ET range 5 TO 8 GeV using the inclusive KT jet finding algorithm.

The dependence of the jet shapes on the transverse jet energy ET in the pseudorapidity range > 2.2 and the ET range 5 TO 8 GeV using the inclusive KT jet finding algorithm.

More…

Measurement of the high-mass Drell-Yan cross section and limits on quark-electron compositeness scales

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.Lett. 82 (1999) 4769-4774, 1999.
Inspire Record 480590 DOI 10.17182/hepdata.42142

We present a measurement of the Drell-Yan cross section at high dielectron invariant mass using 120/pb of data collected in pbar-p collisions at sqrt(s) = 1.8 TeV by the D0 collaboration during 1992-96. No deviation from standard model expectations is observed. We use the data to set limits on the energy scale of quark-electron compositeness with common constituents. The 95% confidence level lower limits on the compositeness scale vary between 3.3 TeV and 6.1 TeV depending on the assumed form of the effective contact interaction.

1 data table

Dielectron production cross section.


Color reconnection studies in e+ e- --> W+ W- at s**(1/2) = 183-GeV.

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Alexander, G. ; et al.
Phys.Lett.B 453 (1999) 153-168, 1999.
Inspire Record 482314 DOI 10.17182/hepdata.47315

The predicted effects of final state interactions such as colour reconnection are investigated by measuring properties of hadronic decays of W bosons, recorded at a centre-of-mass energy of sqrt(s)=182.7 GeV in the OPAL detector at LEP. Dependence on the modelling of hadronic W decays is avoided by comparing W+W- -> qqqq events with the non-leptonic component of W+W- -> qqlnu events. The scaled momentum distribution, its mean value, x_p, and that of the charged particle multiplicity, n_ch, are measured and found to be consistent in the two channels. The measured differences are: Diff(x_p) = +0.7 +- 0.8 +- 0.6 and Diff(n_ch) = (-0.09 +- 0.09 +-0.05)*10**-2. In addition, measurements of rapidity and thrust are performed for W+W- -> qqqq events. The data are described well by standard QCD models and disfavour one model of colour reconnection within the ARIADNE program. The current implementation of the ELLIS-GEIGER model of colour reconnection is excluded. At the current level of statistical precision no evidence for colour reconnection effects was found in the observables studied. The predicted effect of colour reconnection on OPAL measurements of M_W is also quantified in the context of models studied.

1 data table

Here Z is defined as Z = 2*P(C=HADRON)/SQRT(S).


Measurement of D* meson cross sections at HERA and determination of the gluon density in the proton using NLO QCD.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Nucl.Phys.B 545 (1999) 21-44, 1999.
Inspire Record 481112 DOI 10.17182/hepdata.44123

With the H1 detector at the ep collider HERA, D* meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, x_g g(x_g), has been extracted in the momentum fraction range 7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon momentum fraction x_g has been obtained from the measured kinematics of the scattered electron and the D* meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F_2.

13 data tables

Total cross section for DIS D*+- production in the specified kinemtaic range.

DIS cross section as a function of the transverse D* momentum in the laboratory frame.

DIS cross section as a function of the transverse D* momentum in the hadronic centre-of-mass frame.

More…

Measurement of dijet cross-sections at low Q**2 and the extraction of an effective parton density for the virtual photon.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 13 (2000) 397-414, 2000.
Inspire Record 481113 DOI 10.17182/hepdata.44129

The triple-differential dijet cross-section, d^3 sigma_{ep}/dQ2 dE_t2 dxgjets, is measured with the H1 detector at HERA as a function of the photon virtuality Q^2, the fraction of the photon's momentum carried by the parton entering the hard scattering, xgjets, and the square of the mean transverse energy, E_t2, of the two highest E_t jets. Jets are found using a longitudinal boost-invariant k_T clustering algorithm in the gamma* p center of mass frame. The measurements cover the ranges 1.6 < Q^2 < 80 GeV$^2 in virtuality and 0.1 < y < 0.7 in inelasticity y. The results are well described by leading order QCD models which include the effects of a resolved component to the virtual photon. Models which treat the photon as point-like fail to describe the data. An effective leading order parton density for the virtual photon is extracted as a function of the photon virtuality, the probing scale and the parton momentum fraction. The x_gamma and probing scale dependences of the parton density show characteristic features of photon structure, and a suppression of this structure with increasing Q^2 is seen.

8 data tables

No description provided.

No description provided.

No description provided.

More…

Measurement of inclusive rho0, f0(980), f2(1270), K*2(1430)0 and f'2(1525) production in Z0 decays.

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adye, T. ; et al.
Phys.Lett.B 449 (1999) 364-382, 1999.
Inspire Record 482816 DOI 10.17182/hepdata.49345

DELPHI results are presented on the inclusive production of the neutral mesons ρ 0 , f 0 (980), f 2 (1270), K ∗0 2 (1430) and f ′ 2 (1525) in hadronic Z 0 decays. They are based on about 2 million multihadronic events collected in 1994 and 1995, using the particle identification capabilities of the DELPHI Ring Imaging Cherenkov detectors and measured ionization losses in the Time Projection Chamber. The total production rates per hadronic Z 0 decay have been determined to be: 1.19±0.10 for ρ 0 ; 0.164±0.021 for f 0 (980); 0.214±0.038 for f 2 (1270); 0.073±0.023 for K ∗0 2 (1430) ; and 0.012±0.006 for f ′ 2 (1525). The total production rates for all mesons and differential cross-sections for the ρ 0 , f 0 (980) and f 2 (1270) are compared with the results of other LEP experiments and with models.

2 data tables

Differential production cross sections. The error is the quadratic combination of the errors from the fits and the systematic uncertainty.

Integrated rates extrapolated to the full x range.


Measurement of the cross-section for the process gamma* gamma* --> hadrons at LEP.

The L3 collaboration Acciarri, M. ; Achard, P. ; Adriani, O. ; et al.
Phys.Lett.B 453 (1999) 333-342, 1999.
Inspire Record 482478 DOI 10.17182/hepdata.49195

Measurements of the two-photon interaction e + e − → e + e − + hadrons at s ≃ 91 GeV and s ≃ 183 GeV are presented. The double-tag events, collected with the L3 detector, correspond to interated luminosities of 140 pb −1 at 91 GeV and 52 pb −1 at 183 GeV. The cross-section of γ ∗ γ ∗ collisions has been measured at 〈 Q 2 〉 = 3.5 GeV 2 and 〈 Q 2 〉 = 14 GeV 2 . The data agree well with predictions based on perturbative QCD, while the Quark Parton Model alone is insufficient to describe the data.

3 data tables

No description provided.

No description provided.

No description provided.