We have measured, at an average centre-of-mass energy of 34.22 GeV a forward-backward charge asymmetry in the reaction e + e − → μ + μ − of value −0.161 ± 0.032. This demonstrates the existence of an axial vector neutral current with coupling strength of g e a g μ a =0.53 ± 0.10. We have also obtained a limit on the vector coupling strength of g e v g μ v <0.12. The Weinberg angle is found to be sin 2 θ W =0.29 +0.09 −0.11 . From the reaction e + e − → τ + τ − we have found g e a g τ a <0.34, g e v g τ v <0.55.
No description provided.
No description provided.
No description provided.
The CUSB detector at the Cornell Electron Storage Ring has been used to measure R=σ(e+e−→hadrons)σ(e+e−→μ+μ−) in the c.m. energy regions between the ϒ′′ and the ϒ′′′, and above the ϒ′′′ up to s=11.6 GeV, with integrated luminosities of 5000 and 2100 nb−1, respectively. No narrow resonances are observed, and limits on the leptonic widths are presented. The average value of R increases by 0.31±0.06 across the flavor threshold.
UNCORRECTED VALUES OF R.
UNCORRECTED R VALUES BELOW AND ABOVE UPSI(10.5).
FULLY CORRECTED R VALUES, ASSUMING B AB PRODUCTION IS TOTALLY RESPONSIBLE FOR THE EXCESS ABOVE UPSI(10.5).
The jet character of the hadronic final states produced ine+e− annihilations is studied in terms of jet measures such as thrust, sphericity, jet opening angle and jet masses, in the energy range 7.7 to 31.6 GeV. All distributions and averages have been corrected for detector effects and initial state radiation. The energy dependence of the averages of these jet quantities is used to estimate the contributions due to perturbative QCD and fragmentation effects. Correlations between the jet measures and the multiplicity of charged hadrons are also presented.
DIFFERENTIAL THRUST DISTRIBUTIONS WHERE THRUST IS MAX(SUM(ABS(PLONG))/SUM(ABS(P))).
MEAN THRUST VALUES AS A FUNCTION OF CM ENERGY.
DIFFERENTIAL SPERICITY DISTRIBUTIONS WHERE SPHERICITY IS 3/2*MIN(SUM(PT**2)/SUM(ABS(P))).
The topology of hadronic e + e − annihilation events has been analysed using the sphericity tensor and a cluster method. Comparison with quark models including gluon bremsstrahlung yields good agreement with the data. The strong-coupling constant is determined in 1st order QCD to be α S =0.19±0.04 (stat) ± 0.04 (syst.) at 22 GeV and α S =0.16 ±0.02± 0.03 at 34 GeV. The differential cross section with respect to the energy fraction carried by the most energetic parton agrees with the prediction of QCD, but cannot be reproduced by a scalar gluon model. These results are stable against variations of the transverse momentum distribution of the fragmentation function within the quoted errors.
No description provided.
The process e + e − → π 0 + anything has been measured at c.m. energies of 14 and 34 GeV for π 0 energies between 0.5 and 4 GeV. The ratio of π 0 to π ± production for π momenta between 0.5 and 1.5 GeV/ c is measured to be 2 σ ( π 0 )/ [ σ ( π + ) + σ ( π − )] = 1.3 ± 0.4 (1.2 ± 0.4) at 14 (34) GeV. The scaled cross section ( s / μ )d σ /d x when compared with lower energy (4.9–7.4 GeV) π 0 data indicates a substantial scaling violation.
COMPARISON OF PI0 WITH CHARGED PION CROSS SECTIONS (SCALED BI 1/S TO SAME ENERGIES).
No description provided.
No description provided.
The angular distribution and the s dependence of the total cross section for the process e + e − → μ + μ − have been measured using the JADE detector at PETRA. After radiative corrections, a forward-backward asymmetry of −(11.8±3.8) % was observed at an average centre of mass energy of 33.5 GeV. For comparison, an asymmetry of −7.8 % is expected on the basis of the standard Glashow-Salam-Weinberg model.
Best fit to total cross section in energy range.
ANGULAR DISTRIBUTION.
Forward-backward asymmetry within the acceptnce region.
Data on p and Λ production by e + e − -annihilation at CM energies between 30 and 36 GeV are presented. Indication for an angular anticorrelation in events with baryon-antibaryon pairs is seen.
No description provided.
No description provided.
AVERAGE NUMBER OF ANTIBARYONS PER HADRONIC EVENT. AN EXPONENTIAL SLOPE OF 2.5 GEV*-1 IN E WAS ASSUMED IN EXTRAPOLATING E*D3(SIG)/DP**3 TO ALL MOMENTA.
None
CONTINUOUS COVERAGE OF THREE ENERGY RANGES (33.00 TO 33.80, 34.00 TO 35.26 AND 36.08 TO 36.72 GEV PLUS SEVEN ADDITIONAL DATA POINTS AROUND 35.7 GEV).
The differential cross sections of the reactions e + e − → e + e − and e + e − → λλ are measured at energies between 33.0 and 36.7 GeV. The results agree with the predictions of quantum electrodynamics. A comparison with the standard model of electroweak interaction yields sin 2 θ W = 0.25 ± 0.13.
No description provided.
No description provided.
Results on inclusive K s 0 production in e + e − annihilation at mean center-of-mass energies of 9.4, 12.0 and 30 GeV are presented. The ratio R (K 0 ) = 2 σ (K s 0 )/ σ μμ rises from 3.10 ± 0.75 at √ s = 9.4 GeV to 5.6 ± 1.2 at √ s = 30 GeV, corresponding to an approximately constant K 0 /charged-particle ratio of 0.12 ± 0.02. A similar ratio for K 0 / charged particle is observed for direct hadronic decays of the ϒ.
SYSTEMATIC ERROR INCLUDED.
NUMBER OF K0 PER HADRONIC EVENT. AUTHORS ALSO USE MULTIPLICITY TO ESTIMATE NUMBER OF K0 PER CHARGED PARTICLE.
INCLUDING EARLIER DATA.