We present a study of events with Z bosons and jets produced at the Fermilab Tevatron Collider in ppbar collisions at a center of mass energy of 1.96 TeV. The data sample consists of nearly 14,000 Z/G* -> e+e- candidates corresponding to the integrated luminosity of 0.4 fb-1 collected using the D0 detector. Ratios of the Z/G* + >= n jet cross sections to the total inclusive Z/G* cross section have been measured for n = 1 to 4 jet events. Our measurements are found to be in good agreement with a next-to-leading order QCD calculation and with a tree-level QCD prediction with parton shower simulation and hadronization.
Ratio of the cross sections.
Number of observed events per 5 GeV bin for the >=`1Jet sample. Data read from plots.
Number of observed events per 5 GeV bin for the >=2Jet sample. Data read from plots.
We present the first statistically meaningful results from two-K0s interferometry in heavy-ion collisions. A model that takes the effect of the strong interaction into account has been used to fit the measured correlation function. The effects of single and coupled channel were explored. At the mean transverse mass m_T = 1.07 GeV, we obtain the values R = 4.09 +/- 0.46 (stat.) +/- 0.31 (sys) fm and lambda = 0.92 +/- 0.23 (stat) +/- 0.13 (sys), where R and lambda are the invariant radius and chaoticity parameters respectively. The results are qualitatively consistent with m_T systematics established with pions in a scenario characterized by a strong collective flow.
K0s invariant mass distribution
Signal to (Signal + Background) ratio for K0s decay length > 6 cm.
Mean KT distribution of K0s pairs
We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at sqrt(s)=200 GeV. The cross section data cover transverse momenta 5 < pT < 50 GeV/c and agree with next-to-leading order perturbative QCD evaluations. The A_LL data cover 5 < pT < 17 GeV/c and disfavor at 98% C.L. maximal positive gluon polarization in the polarized nucleon.
(a) Inclusive differential cross section for p+p -> jet +X at sqrt(s) = 200 GeV versus jet pT for a jet cone radius of 0.4. The symbols show MB (open squares) and HT (filled circles) data from the years 2003 and 2004 combined. The horizontal bars indicate the ranges of the pT intervals. The curve shows a NLO calculation. (b) Comparison of theory and data. The band indicates the experimental systematic uncertainty. The upper (lower) dashed line indicates the relative change of the NLO calculation when it is evaluated at &mu = pT/2 (&mu = 2pT).
(a) Inclusive differential cross section for p+p -> jet +X at sqrt(s) = 200 GeV versus jet pT for a jet cone radius of 0.4. The symbols show MB (open squares) and HT (filled circles) data from the years 2003 and 2004 combined. The horizontal bars indicate the ranges of the pT intervals. The curve shows a NLO calculation. (b) Comparison of theory and data. The band indicates the experimental systematic uncertainty. The upper (lower) dashed line indicates the relative change of the NLO calculation when it is evaluated at &mu = pT/2 (&mu = 2pT).
The longitudinal double-spin asymmetry ALL in p+p-> jet +X at sqrt(s) = 200 GeV versus jet pT. The uncertainties on the data points are statistical. The gray band indicates the systematic uncertainty from the beam polarization measurement, and the hatched band the total systematic uncertainty. The curves show predictions based on deep-inelastic scattering parametrizations of gluon polarization.
We determine rapidity asymmetry in the production of charged pions, protons and anti-protons for large transverse momentum (pT) for d+Au collisions at \sqrt s_NN = 200 GeV. The identified hadrons are measured in the rapidity regions |y| < 0.5 and 0.5 < |y| < 1.0 for the pT range 2.5 < pT < 10 GeV/c. We observe significant rapidity asymmetry for charged pion and proton+anti-proton production in both rapidity regions. The asymmetry is larger for 0.5 < |y| < 1.0 than for |y|< 0.5 and is almost independent of particle type. The measurements are compared to various model predictions employing multiple scattering, energy loss, nuclear shadowing, saturation effects, and recombination, and also to a phenomenological parton model. We find that asymmetries are sensitive to model parameters and show model-preference. The rapidity dependence of \pi^{-}/\pi^{+} and \bar{p}/p ratios in peripheral d+Au and forward neutron-tagged events are used to study the contributions of valence quarks and gluons to particle production at high pT. The results are compared to calculations based on NLO pQCD and other measurements of quark fragmentation functions.
High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.
High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.
High transverse-momentum spectra ($p_{T} > 2.5$ GeV/c) of charged pions, protons, and antiprotons for the rapidity regions $|y| < 0.5$ (solid symbols) and $0.5 < |y| < 1.0$ (open symbols) for $d+Au$ collisions and various event centrality classes at $\sqrt{s_{NN}}=200$ GeV.
We present STAR measurements of the azimuthal anisotropy parameter $v_2$ for pions, kaons, protons, $\Lambda$, $\bar{\Lambda}$, $\Xi+\bar{\Xi}$, and $\Omega + \bar{\Omega}$, along with $v_4$ for pions, kaons, protons, and $\Lambda + \bar{\Lambda}$ at mid-rapidity for Au+Au collisions at $\sqrt{s_{_{NN}}}=62.4$ and 200 GeV. The $v_2(p_T)$ values for all hadron species at 62.4 GeV are similar to those observed in 130 and 200 GeV collisions. For observed kinematic ranges, $v_2$ values at 62.4, 130, and 200 GeV are as little as 10%--15% larger than those in Pb+Pb collisions at $\sqrt{s_{_{NN}}}=17.3$ GeV. At intermediate transverse momentum ($p_T$ from 1.5--5 GeV/c), the 62.4 GeV $v_2(p_T)$ and $v_4(p_T)$ values are consistent with the quark-number scaling first observed at 200 GeV. A four-particle cumulant analysis is used to assess the non-flow contributions to pions and protons and some indications are found for a smaller non-flow contribution to protons than pions. Baryon $v_2$ is larger than anti-baryon $v_2$ at 62.4 and 200 GeV perhaps indicating either that the initial spatial net-baryon distribution is anisotropic, that the mechanism leading to transport of baryon number from beam- to mid-rapidity enhances $v_2$, or that anti-baryon and baryon annihilation is larger in the in-plane direction.
Minimum-bias (0–80% of the collision cross section) v2(pT ) for identified hadrons at |η| < 1 from Au+Au collisions at √sNN = 62.4 GeV. To facilitate comparisons between panels, v2 values for inclusive charged hadrons are displayed in each panel. The error bars on the data points represent statistical uncertainties. Systematic uncertainties for the identified particles are shown as shaded bands around v2 = 0.
Minimum-bias (0–80% of the collision cross section) v2(pT ) for identified hadrons at |η| < 1 from Au+Au collisions at √sNN = 62.4 GeV. To facilitate comparisons between panels, v2 values for inclusive charged hadrons are displayed in each panel. The error bars on the data points represent statistical uncertainties. Systematic uncertainties for the identified particles are shown as shaded bands around v2 = 0.
Minimum-bias (0–80% of the collision cross section) v2(pT ) for identified hadrons at |η| < 1 from Au+Au collisions at √sNN = 62.4 GeV. To facilitate comparisons between panels, v2 values for inclusive charged hadrons are displayed in each panel. The error bars on the data points represent statistical uncertainties. Systematic uncertainties for the identified particles are shown as shaded bands around v2 = 0.
We present first measurements of the $\phi$-meson elliptic flow ($v_{2}(p_{T})$) and high statistics $p_{T}$ distributions for different centralities from $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the $v_{2}$ of the $\phi$ meson is consistent with the trend observed for mesons. The ratio of the yields of the $\Omega$ to those of the $\phi$ as a function of transverse momentum is consistent with a model based on the recombination of thermal $s$ quarks up to $p_{T}\sim 4$ GeV/$c$, but disagrees at higher momenta. The nuclear modification factor ($R_{CP}$) of $\phi$ follows the trend observed in the $K^{0}_{S}$ mesons rather than in $\Lambda$ baryons, supporting baryon-meson scaling. Since $\phi$-mesons are made via coalescence of seemingly thermalized $s$ quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.
The elliptic flow, $v_{2}$($p_{T}$), for the $\phi$-meson as a function of centrality. The vertical error bars represent the statistical errors while the shaded bands represent the systematic uncertainties. For clarity, data points are shifted slightly.
(color online) Transverse momentum distributions of $\phi$-mesons from Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV. For clarity, distributions for different centralities are scaled by factors of ten. Dashed lines represent the exponential fits to the distributions and the dotted lines are Levy function fits. Error bars represent statistical errors only.
(color online) The $N(\Omega)/N(\phi)$ ratio vs. $p_{T}$ for three centrality bins in $\sqrt{s_{NN}}$ = 200 GeV Au+Au collisions. The solid and dashed lines represent recombination model predictions for central collisions [21] for total and thermal contributions, respectively.
We study the energy dependence of the transverse momentum (pT) spectra for charged pions, protons and anti-protons for Au+Au collisions at \sqrt{s_NN} = 62.4 and 200 GeV. Data are presented at mid-rapidity (|y| < 0.5) for 0.2 < pT < 12 GeV/c. In the intermediate pT region (2 < pT < 6 GeV/c), the nuclear modification factor is higher at 62.4 GeV than at 200 GeV, while at higher pT (pT >7 GeV/c) the modification is similar for both energies. The p/pi+ and pbar/pi- ratios for central collisions at \sqrt{s_NN} = 62.4 GeV peak at pT ~ 2 GeV/c. In the pT range where recombination is expected to dominate, the p/pi+ ratios at 62.4 GeV are larger than at 200 GeV, while the pbar/pi- ratios are smaller. For pT > 2 GeV/c, the pbar/pi- ratios at the two beam energies are independent of pT and centrality indicating that the dependence of the pbar/pi- ratio on pT does not change between 62.4 and 200 GeV. These findings challenge various models incorporating jet quenching and/or constituent quark coalescence.
Midrapidity (|y| < 0.5) transverse momentum spectra for pions, protons, anti-protons for various event centrality classes for Au+Au at sqrt(sNN) = 62.4 GeV. Also shown to study the energy dependence are the central 0-12% pion, proton, anti-proton spectra for Au+Au at sqrt(sNN) = 200 GeV.
The insets show pi−/pi+ ratios at sqrt(sNN) = 62.4 GeV and anti-proton/proton ratios at sqrt(sNN) = 62.4 (0-10%) and 200 GeV (0-12%).
The minimum bias data shown here were extracted from the figures by xyscan. Hence, the dataset is not full (especially in the lower pT range where it is hard to distinguish points), and the statistical errors shown here are an upper limit of the statistical uncertainty based on the marker sizes.
We present a measurement of the top quark pair production cross section in ppbar collisions at sqrt(s)=1.96 TeV utilizing 425 pb-1 of data collected with the D0 detector at the Fermilab Tevatron Collider. We consider the final state of the top quark pair containing one high-pT electron or muon and at least four jets. We exploit specific kinematic features of ttbar events to extract the cross section. For a top quark mass of 175 GeV, we measure sigma_ttbar = 6.4 +1.3-1.2(stat} +/- 0.7(syst)+/- 0.4(lum) pb in good agreement with the standard model prediction.
TOP TOPBAR production cross section.
We present a study of eegamma and mumugamma events using over 1 fb-1 of data collected with the D0 detector at the Fermilab Tevatron ppbar Collider at sqrt(s) = 1.96 TeV. Having observed 453 (515) candidates in the eegamma (mumugamma) final state, we measure the Zgamma production cross section for a photon with transverse energy ET > 7 GeV, separation between the photon and leptons Delta R(lgamma} > 0.7, and invariant mass of the di-lepton pair M(ll) > 30 GeV, to be 4.96 +/- 0.30(stat. + syst.) +/- 0.30(lumi.) pb, in agreement with the standard model prediction of 4.74 +/- 0.22 pb. This is the most precise Zgamma cross section measurement at a hadron collider. We set limits on anomalous trilinear Zgammagamma and ZZgamma gauge boson couplings of -0.085 < h(30)^(gamma) < 0.084, -0.0053 < h(40)^(gamma) < 0.0054 and -0.083 < h(30)^(Z) < 0.082, -0.0053 < h(40)^(Z) < 0.0054 at the 95% C.L. for the form-factor scale Lambda = 1.2 TeV.
Measured cross section for Z0 GAMMA production. Error contains both statistics and systematics (excluding luminosity uncertainty).
We report on the observed differences in production rates of strange and multi-strange baryons in Au+Au collisions at sqrts = 200 GeV compared to pp interactions at the same energy. The strange baryon yields in Au+Au collisions, then scaled down by the number of participating nucleons, are enhanced relative to those measured in pp reactions. The enhancement observed increases with the strangeness content of the baryon, and increases for all strange baryons with collision centrality. The enhancement is qualitatively similar to that observed at lower collision energy sqrts =17.3 GeV. The previous observations are for the bulk production, while at intermediate pT, 1 < pT< 4 GeV/c, the strange baryons even exceed binary scaling from pp yields.
Midrapidity E(i) as a function of $<N_{part}>$ for $\Lambda$, $\bar{\Lambda}$ ($|y| < 1.0$), $\Xi^{-}$, $\bar{\Xi}^{+}$ ($|y| < 0.75$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature. Grand Canonical Model arrows(values in brackets), for $\Lambda$ E(2.6) and T(165 MeV) for $\bar{\Lambda}$ E(2.2) and T(170 MeV), for $\Xi$ E(10.7) and T(165 MeV), for anti-$\Xi$ E(7.5) and T(170 MeV).
Midrapidity E(i) as a function of $<N_{part}>$ for $\Omega^{-}+\bar{\Omega}^{+}$ ($|y| < 0.75$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature.
Midrapidity E(i) as a function of $<N_{part}>$ for inclusive $p$ ($|y| < 0.5$). Error bars on the data points represent those from the heavy ions. Stat. and syst. errors added in quadrature.