An experimental study of $\omega$ photoproduction on the proton was conducted by using the Crystal Ball and TAPS multiphoton spectrometers together with the photon tagging facility at the Mainz Microtron MAMI. The $\gamma p\to\omega p$ differential cross sections are measured from threshold to the incident-photon energy $E_\gamma=1.40$ GeV ($W=1.87$ GeV for the center-of-mass energy) with 15-MeV binning in $E_\gamma$ and full production-angle coverage. The quality of the present data near threshold gives access to a variety of interesting physics aspects. As an example, an estimation of the $\omega N$ scattering length $\alpha_{\omega p}$ is provided.
Total cross section as a function of c.m. energy W.
Differential cross section at W= 1.7245 GeV
Differential cross section at W= 1.7319 GeV
Measurements of $\gamma p \rightarrow K^{+} \Lambda$ and $\gamma p \rightarrow K^{+} \Sigma^0$ cross-sections have been obtained with the photon tagging facility and the Crystal Ball calorimeter at MAMI-C. The measurement uses a novel $K^+$ meson identification technique in which the weak decay products are characterized using the energy and timing characteristics of the energy deposit in the calorimeter, a method that has the potential to be applied at many other facilities. The fine center-of-mass energy ($W$) resolution and statistical accuracy of the new data results in a significant impact on partial wave analyses aiming to better establish the excitation spectrum of the nucleon. The new analyses disfavor a strong role for quark-diquark dynamics in the nucleon.
Excitation function at cos(Theta_K+)cm = -0.8
Excitation function at cos(Theta_K+)cm = -0.7
Excitation function at cos(Theta_K+)cm = -0.6
The g p -> K^0 Sigma^+ reaction has been measured from threshold to Eg=1.45 GeV (W_cm=1.9 GeV) using the Crystal Ball and TAPS multiphoton spectrometers together with the photon tagging facility at the Mainz Microtron MAMI. In the present experiment, this reaction was searched for in the 3pi^0 p final state, by assuming K^0_S -> pi^0 pi^0 and Sigma^+ -> pi^0 p. The experimental results include total and differential cross sections as well as the polarization of the recoil hyperon. The new data significantly improve empirical knowledge about the g p -> K^0 Sigma^+ reaction in the measured energy range. The results are compared to previous measurements and model predictions. It is demonstrated that adding the present g p -> K^0 Sigma^+ results to existing data allowed a better description of this reaction with various models.
The differential cross section for photon energies 1125, 1175 and 1225 MeV.
The differential cross section for photon energies 1275, 1325, 1375 and 1425 MeV.
The recoil polarization of the SIGMA+ for photon energy 1125, 1175 and 1225 MeV.
A precision measurement of the differential cross sections $d\sigma/d\Omega$ and the linearly polarized photon asymmetry $\Sigma \equiv (d\sigma_\perp - d\sigma_\parallel) \slash (d\sigma_\perp + d\sigma_\parallel)$ for the $\vec{\gamma} p \rightarrow \pi^0p$ reaction in the near-threshold region has been performed with a tagged photon beam and almost $4\pi$ detector at the Mainz Microtron. The Glasgow-Mainz photon tagging facility along with the Crystal Ball/TAPS multi-photon detector system and a cryogenic liquid hydrogen target were used. These data allowed for a precise determination of the energy dependence of the real parts of the $S$- and all three $P$-wave amplitudes for the first time and provide the most stringent test to date of the predictions of Chiral Perturbation Theory and its energy region of agreement with experiment.
Differential cross section at W=1.0752268 GeV
Differential cross section at W=1.0773190 GeV
Differential cross section at W=1.0793464 GeV
The total cross section for gamma p -> 3pi0 p has been measured for the first time from threshold to 1.4 GeV using the tagged photon beam of the Mainz Microtron. The equipment utilized the Crystal Ball multiphoton spectrometer, the TAPS forward detector and a particle identification detector. The gamma p -> 3pi0 p total cross section has two broad enhancements at sqrt{s}~1.5 GeV and 1.7 GeV. We obtained the ratio of the total cross sections gamma p -> 3pi0 p to gamma p -> eta p equal to 0.014 \pm 0.001 at sqrt{s}~1.5 GeV.
The measured total cross section with statistical errors.
The gp-->etap reaction has been measured with the Crystal Ball and TAPS multiphoton spectrometers in the energy range from the production threshold of 707 MeV to 1.4 GeV (1.49 =< W >= 1.87 GeV). Bremsstrahlung photons produced by the 1.5-GeV electron beam of the Mainz Microtron MAMI-C and momentum analyzed by the Glasgow Tagging Spectrometer were used for the eta-meson production. Our accumulation of 3.8 x 10^6 gp-->etap-->3pi0p-->6gp events allows a detailed study of the reaction dynamics. The gp-->etap differential cross sections were determined for 120 energy bins and the full range of the production angles. Our data show a dip near W = 1680 MeV in the total cross section caused by a substantial dip in eta production at forward angles. The data are compared to predictions of previous SAID and MAID partial-wave analyses and to thelatest SAID and MAID fits that have included our data.
Total cross section for the reaction GAMMA P --> ETA P.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 710.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 714.5 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
The reaction gamma p -> p pi0 gamma' has been measured with the Crystal Ball / TAPS detectors using the energy-tagged photon beam at the electron accelerator facility MAMI-B. Energy and angular differential cross sections for the emitted photon gamma' and angular differential cross sections for the pi0 have been determined with high statistics in the energy range of the Delta+(1232) resonance. Cross sections and the ratio of the cross section to the non-radiative process gamma p -> p pi0 are compared to theoretical reaction models, having the anomalous magnetic moment kappa_Delta+ as free parameter. As the shape of the experimental distributions is not reproduced in detail by the model calculations, currently no extraction of kappa_Delta+ is feasible.
Total cross section for the background reaction GAMMA P --> P PI0.
Total cross section for the background reaction GAMMA P --> P PI0 PI0.
Angular distribution of the PI0 in the reaction GAMMA P --> P PI0 at beam energy 400 MeV. Inclusive measurement where only the PI0 decay photons are detected.
Total and differential cross sections for the reaction gamma p -> pi^o eta p have been measured with the Crystal Ball/TAPS detector using the tagged photon facility at the MAMI C accelerator in Mainz. In the energy range E_gamma=0.95-1.4 GeV the reaction is dominated by the excitation and sequential decay of the Delta(1700)D33 resonance. Angular distributions measured with high statistics allow us to determine the ratio of hadronic decay widths \Gamma_{\eta \Delta}/\Gamma_{\pi S11} and the ratio of the helicity amplitudes A_{3/2}/A_{1/2} for this resonance.
Total cross section for the GAMMA P --> PI0 ETA P reaction.. Statistical erros only.
The differential cross section as a function of cos(theta(pi0) in the canonical(K) reference frame.. Statistical erros only.
The differential cross section as a function of phi(pi0) in the canonical(K) reference frame.. Statistical erros only.
The differential cross section of Delbr\"{u}ck scattering is measured on a bismuth germanate $Bi_4Ge_3O_{12}$ target at photon energies $140 - 450 MeV$ and scattering angles $2.6 - 16.6 mrad$. A good agreement with the theoretical results, obtained exactly in a Coulomb field, is found.
Axis error includes +- 1.5/1.5 contribution (Error of measurement of the initial photons intensity).
Inelastic and elasticJ/ψ (3097) photoproduction on Li6 are measured at a mean γ energy of 90 GeV in an open spectrometer. TheJ/ψ are identified by their decays intoμ+μ− ore+e−. A signal of ψ′(3685) intoμ+μ− andJ/ψπ+π− is also seen. The inelastic cross-section withZ=Eψ/Eγ<0.9 is compared in shape and magnitude with the colour singlet model of photon-gluon fusion.
DIMUON TRIGGER, INELASTIC MEANS Z < 0.9.
ELECTRON TRIGGER, INELASTIC MEANS Z < 0.9.