None
No description provided.
No description provided.
No description provided.
We report a measurement of the inclusive charged-particle distribution for gluon jets derived from nearly threefold-symmetric three-jet events taken at center-of-mass energy of 29 GeV in e+e− annihilation. The charged-particle spectrum for these jets is observed to fall off more rapidly than those of quark jets of the same energy.
Errors include both statistics and the uncertainty in correction factors. X is defined at the energy of the individual particle divided by the total energy of the jet to which it is assigned.
Results on inclusive ϕ production inK−p interactions at 110 GeV/c are presented. The production cross section is found to be larger than in πp andpp interactions at similar energies, suggesting OZI allowed\(s\bar s\) fusion to be the dominant mechanism in ϕ production. Thex distributions of ϕ and\(\bar K^{*0} \) are found to be similar to each other over the entirex range suggesting an overall strangeness suppression factor of 0.20±0.04 in the sea to be the dominant source of the difference in the cross section for ϕ and\(\bar K^{*0} \). There is no evidence of a narrowφπ− state around 2.1 GeV/c2 as suggested byK+ experiments, but there is some excess of events in the region 1.94−1.98 GeV/c2 consistent with theF-meson mass as observed ine+e− experiments.
Errors contain both statistics and systematics.
F(XL) is invariant cross section.
A search for the reactionsγγ→ωω andγγ→ρ0ω has been carried out at an averagee+e− CM energy of 34.6 GeV with an integrated luminosity of 45 pb−1. Upper limits are set for these two channels over the γγ CM Energy range of 1.6 to 2.5 GeV. The cross section is determined for the exclusive channelγγ→π+2π−π0.
Data read from graph.
Data read from graph.
Data read from graph.
An analysis of the production ofKS0KS0 andK±Ks0π∓ by two quasi-real photons is presented. The cross section forγγ→K0\(\overline {K^0 } \), which is given for the γγ invariant mass range fromK\(\bar K\) threshold to 2.5 GeV, is dominated by thef′(1525) resonance and an enhancement near theK\(\bar K\) threshold. Upper limits on the product of the two-photon width times the branching ratio intoK\(\bar K\) pairs are given forΘ(1700),h(2030), and ξ(2220). For exclusive two-photon production ofK±Ks0π∓ no significant signal was observed. Upper limits are given on the cross section ofγγ→K+\(\overline {K^0 } \)π− orK−K0π+ between 1.4 and 3.2 GeV and on the product of the γγ width times the branching ratio into theK\(\bar K\)π final states for theηc(2980) and the ι(1440), yieldingΓ(γγ)→i(1440))·BR(i(1440)→K\(\bar K\)π<2.2 keV at 95% C.L.
Data read from graph.. Corrected for the angular distribution, which is assumed to be sin(theta)**4 for W > 1.14 GeV and isotropic in the first bin.
Data read from graph.
The reaction γγ→π0η has been investigated with the Crystal Ball detector at the DESY storage ring DORIS II. Formation of δ(980) and A2(1320) has been observed with γγ partial widths Γγγ(A2)=1.14±0.20±0.2 6 keV and Γγγ(δ)B(δ→πη)=0.19±0.07 −0.07+0.10 keV.
No description provided.
No description provided.
None
Background subtracted.
In an experiment at the CERN intersecting storage rings with √ s = 31 GeV, we have measured αP , the product of asymmetry parameter and polarization, for Λ 0 's and Λ 0 's produced in p p and pp interactions, respectively. The ratio, (αP) Λ /(αP Λ = −1.04±0.29 , is consistent with the value −1, and constitutes the first test of CP invariance in Λ decay.
The ratio CONST/CONST is obtained under assumption of POL(LAMBDA) = POL(LAMBDABAR).
Charm-charm correlation properties are studied in detail for the first time using a sample of D D pairs produced in 360 GeV/ c π − p interactions. The data are compared with various models of charm production.
No description provided.
A high-statistics measurement has been made of the process e+e−→μ+μ− at s=29 GeV with the MAC detector at the SLAC storage ring PEP. The electroweak forward-backward charge asymmetry for a sample of approximately 16 000 events was measured to be Aμμ=−0.063±0.008±0.002. The ratio of the cross section to the lowest-order QED cross section was measured to be Rμμ=1.01±0.01±0.03. From these results the weak neutral axial-vector and vector couplings are determined to be gAegAμ=0.25±0.03±0.01 and gVegVμ=−0.02±0.03±0.09.
Data are fully corrected, including radiative effects.
Asymmetry determined from a two parameter fit to the angular distribution proportional to R*(1 + cos(theta)**2 + (8/3)*A*cos(theta)). R is then the total ratio relative to the lowest order QED cross section and A is the forward-backward asymmetry.
No description provided.