Date

Observation of an exotic narrow doubly charmed tetraquark

The LHCb collaboration Aaij, Roel ; Abdelmotteleb, Ahmed Sameh Wagih ; Abellán Beteta, Carlos ; et al.
Nature Phys. 18 (2022) 751-754, 2022.
Inspire Record 1915457 DOI 10.17182/hepdata.114869

Conventional hadronic matter consists of baryons and mesons made of three quarks and quark-antiquark pairs, respectively. The observation of a new type of hadronic state, a doubly charmed tetraquark containing two charm quarks, an anti-$u$ and an anti-$d$ quark, is reported using data collected by the LHCb experiment at the Large Hadron Collider. This exotic state with a mass of about 3875 MeV$/c^2$ manifests itself as a narrow peak in the mass spectrum of $D^0D^0\pi^+$ mesons just below the $D^{*+}D^0$ mass threshold. The near threshold mass together with a strikingly narrow width reveals the resonance nature of the state.

0 data tables match query

Search for Majorana neutrinos in same-sign $WW$ scattering events from $pp$ collisions at $\sqrt{s}=13$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 83 (2023) 824, 2023.
Inspire Record 2662303 DOI 10.17182/hepdata.141494

A search for Majorana neutrinos in same-sign $WW$ scattering events is presented. The analysis uses $\sqrt{s}= 13$ TeV proton-proton collision data with an integrated luminosity of 140 fb$^{-1}$ recorded during 2015-2018 by the ATLAS detector at the Large Hadron Collider. The analysis targets final states including exactly two same-sign muons and at least two hadronic jets well separated in rapidity. The modelling of the main backgrounds, from Standard Model same-sign $WW$ scattering and $WZ$ production, is constrained with data in dedicated signal-depleted control regions. The distribution of the transverse momentum of the second-hardest muon is used to search for signals originating from a heavy Majorana neutrino with a mass between 50 GeV and 20 TeV. No significant excess is observed over the background expectation. The results are interpreted in a benchmark scenario of the Phenomenological Type-I Seesaw model. In addition, the sensitivity to the Weinberg operator is investigated. Upper limits at the 95% confidence level are placed on the squared muon-neutrino-heavy-neutrino mass-mixing matrix element $\vert V_{\mu N} \vert^{2}$ as a function of the heavy Majorana neutrino's mass $m_N$, and on the effective $\mu\mu$ Majorana neutrino mass $|m_{\mu\mu}|$.

0 data tables match query

Search for metastable heavy charged particles with large ionization energy loss in pp collisions at $\sqrt{s} = 13$ TeV using the ATLAS experiment

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Rev.D 93 (2016) 112015, 2016.
Inspire Record 1448101 DOI 10.17182/hepdata.73584

This paper presents a search for massive charged long-lived particles produced in pp collisions at $\sqrt{s}=$ 13 TeV at the LHC using the ATLAS experiment. The dataset used corresponds to an integrated luminosity of 3.2 fb$^{-1}$. Many extensions of the Standard Model predict the existence of massive charged long-lived particles, such as $R$-hadrons. These massive particles are expected to be produced with a velocity significantly below the speed of light, and therefore to have a specific ionization higher than any Standard Model particle of unit charge at high momenta. The Pixel subsystem of the ATLAS detector is used to measure the ionization energy loss of reconstructed charged particles and to search for such highly ionizing particles. The search presented here has much greater sensitivity than a similar search performed using the ATLAS detector in the $\sqrt{s}=$ 8 TeV dataset, thanks to the increase in expected signal cross-section due to the higher center-of-mass energy of collisions, to an upgraded detector with a new silicon layer close to the interaction point, and to analysis improvements. No significant deviation from Standard Model background expectations is observed, and lifetime-dependent upper limits on $R$-hadron production cross-sections and masses are set. Gluino $R$-hadrons with lifetimes above 0.4 ns and decaying to $q\bar{q}$ plus a 100 GeV neutralino are excluded at the 95% confidence level, with lower mass limit ranging between 740 GeV and 1590 GeV. In the case of stable $R$-hadrons the lower mass limit at the 95% confidence level is 1570 GeV.

0 data tables match query

Measurement of electrons from beauty-hadron decays in p-Pb collisions at $\mathbf{\sqrt{s_{\rm NN}}=5.02}$ TeV and Pb-Pb collisions at $\mathbf{\sqrt{s_{\rm NN}}=2.76}$ TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
JHEP 07 (2017) 052, 2017.
Inspire Record 1486391 DOI 10.17182/hepdata.77904

The production of beauty hadrons was measured via semi-leptonic decays at mid-rapidity with the ALICE detector at the LHC in the transverse momentum interval $1<p_{\rm T}<8$ GeV/$c$ in minimum-bias p-Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV and in $1.3<p_{\rm T}<8$ GeV/$c$ in the 20% most central Pb-Pb collisions at $\sqrt{s_{\rm NN}}=2.76$ TeV. The pp reference spectra at $\sqrt{s}=5.02$ TeV and $\sqrt{s}=2.76$ TeV, needed for the calculation of the nuclear modification factors $R_{\rm pPb}$ and $R_{\rm PbPb}$, were obtained by a pQCD-driven scaling of the cross section of electrons from beauty-hadron decays measured at $\sqrt{s}=7$ TeV. In the $p_{\rm T}$ interval $3<p_{\rm T}<8$ GeV/$c$ a suppression of the yield of electrons from beauty-hadron decays is observed in Pb-Pb compared to pp collisions. Towards lower $p_{\rm T}$, the $R_{\rm PbPb}$ values increase with large systematic uncertainties. The $R_{\rm pPb}$ is consistent with unity within systematic uncertainties and is well described by theoretical calculations that include cold nuclear matter effects in p-Pb collisions. The measured $R_{\rm pPb}$ and these calculations indicate that cold nuclear matter effects are small at high transverse momentum also in Pb-Pb collisions. Therefore, the observed reduction of $R_{\rm PbPb}$ below unity at high $p_{\rm T}$ may be ascribed to an effect of the hot and dense medium formed in Pb-Pb collisions.

0 data tables match query

Observation of a multiplicity dependence in the $p_{\rm T}$-differential charm baryon-to-meson ratios in proton-proton collisions at $\sqrt{s} = 13$ TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 829 (2022) 137065, 2022.
Inspire Record 1973854 DOI 10.17182/hepdata.128718

The production of prompt $D^{0}$, $D^{+}_{\rm s}$, and $\Lambda_{\rm c}^{+}$ hadrons, and their ratios, $D^{+}_{\rm s}$/$D^{0}$ and $\Lambda_{\rm c}^{+}$/$D^{0}$, are measured in proton-proton collisions at $\sqrt{s}$ = 13 TeV at midrapidity ($|y| <0.5$) with the ALICE detector at the LHC. The measurements are performed as a function of the charm-hadron transverse momentum ($p_{\rm T}$) in intervals of charged-particle multiplicity, measured with two multiplicity estimators covering different pseudorapidity regions. While the strange to non-strange $D^{+}_{\rm s}$/$D^{0}$ ratio indicates no significant multiplicity dependence, the baryon-to-meson $p_{\rm T}$-differential $\Lambda_{\rm c}^{+}$/$D^{0}$ ratio shows a multiplicity-dependent enhancement, with a significance of 5.3$\sigma$ for $1< p_{\rm T} < 12$ GeV/$c$, comparing the highest multiplicity interval with respect to the lowest one. The measurements are compared with a theoretical model that explains the multiplicity dependence by a canonical treatment of quantum charges in the statistical hadronisation approach, and with predictions from event generators that implement colour reconnection mechanisms beyond the leading colour approximation to model the hadronisation process. The $\Lambda_{\rm c}^{+}$/$D^{0}$ ratios as a function of $p_{\rm T}$ present a similar shape and magnitude as the $\Lambda/K^{0}_{s}$ ratios in comparable multiplicity intervals, suggesting a potential common mechanism for light- and charm-hadron formation, with analogous multiplicity dependence. The $p_{\rm T}$-integrated ratios, extrapolated down to $p_{\rm T}$=0, do not show a significant dependence on multiplicity within the uncertainties.

0 data tables match query

Measurement of $b$-quark fragmentation properties in jets using the decay $B^{\pm} \to J/\psi K^{\pm}$ in $pp$ collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
JHEP 12 (2021) 131, 2021.
Inspire Record 1913061 DOI 10.17182/hepdata.94220

The fragmentation properties of jets containing $b$-hadrons are studied using charged $B$ mesons in 139 fb$^{-1}$ of $pp$ collisions at $\sqrt{s} = 13$ TeV, recorded with the ATLAS detector at the LHC during the period from 2015 to 2018. The $B$ mesons are reconstructed using the decay of $B^{\pm}$ into $J/\psi K^{\pm}$, with the $J/\psi$ decaying into a pair of muons. Jets are reconstructed using the anti-$k_t$ algorithm with radius parameter $R=0.4$. The measurement determines the longitudinal and transverse momentum profiles of the reconstructed $B$ hadrons with respect to the axes of the jets to which they are geometrically associated. These distributions are measured in intervals of the jet transverse momentum, ranging from 50 GeV to above 100 GeV. The results are corrected for detector effects and compared with several Monte Carlo predictions using different parton shower and hadronisation models. The results for the longitudinal and transverse profiles provide useful inputs to improve the description of heavy-flavour fragmentation in jets.

0 data tables match query

Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ = 5.02 TeV

The ALICE collaboration Adam, Jaroslav ; Adamova, Dagmar ; Aggarwal, Madan Mohan ; et al.
Phys.Rev.Lett. 116 (2016) 222302, 2016.
Inspire Record 1410589 DOI 10.17182/hepdata.73052

The pseudorapidity density of charged particles ($\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$) at mid-rapidity in Pb-Pb collisions has been measured at a center-of-mass energy per nucleon pair of $\sqrt{s_{\rm NN}}$ = 5.02 TeV. It increases with centrality and reaches a value of $1943 \pm 54$ in $|\eta|<0.5$ for the 5% most central collisions. A rise in $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ as a function of $\sqrt{s_{\rm NN}}$ for the most central collisions is observed, steeper than that observed in proton-proton collisions and following the trend established by measurements at lower energy. The centrality dependence of $\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ as a function of the average number of participant nucleons, ${\langle N_\mathrm{part} \rangle}$, calculated in a Glauber model, is compared with the previous measurement at lower energy. A constant factor of about 1.2 describes the increase in $\frac{2}{\langle N_\mathrm{part} \rangle}\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta \rangle$ from $\sqrt{s_{\rm NN}}$ = 2.76 TeV to $\sqrt{s_{\rm NN}}$ = 5.02 TeV for all centrality intervals, within the measured range of 0-80% centrality. The results are also compared to models based on different mechanisms for particle production in nuclear collisions.

0 data tables match query

Search for Diphoton Events with Large Missing Transverse Energy with 36 pb$^{-1}$ of 7 TeV Proton-Proton Collision Data with the {ATLAS} Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 71 (2011) 1744, 2011.
Inspire Record 916840 DOI 10.17182/hepdata.58302

Making use of 36 pb^-1 of proton-proton collision data at sqrt{s} = 7 TeV, the ATLAS Collaboration has performed a search for diphoton events with large missing transverse energy. Observing no excess of events above the Standard Model prediction, a 95% Confidence Level (CL) upper limit is set on the cross section for new physics of sigma < 0.38 - 0.65 pb in the context of a generalised model of gauge mediated supersymmetry breaking (GGM) with a bino-like lightest neutralino, and of sigma < 0.18 - 0.23 pb in the context of a specific model with one universal extra dimension (UED). A 95 % CL lower limit of 560 GeV, for bino masses above 50 GeV, is set on the GGM gluino mass, while a lower limit of 1/R > 961 GeV is set on the UED compactification radius R. These limits provide the most stringent tests of these models to date.

0 data tables match query

Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 120 (2018) 071802, 2018.
Inspire Record 1624166 DOI 10.17182/hepdata.83201

An inclusive search for the standard model Higgs boson ($\mathrm{H}$) produced with large transverse momentum ($p_\mathrm{T}$) and decaying to a bottom quark-antiquark pair ($\mathrm{b}\overline{\mathrm{b}}$) is performed using a data set of pp collisions at $\sqrt{s}=$ 13 TeV collected with the CMS experiment at the LHC. The data sample corresponds to an integrated luminosity of 35.9 fb$^{-1}$. A highly Lorentz-boosted Higgs boson decaying to $\mathrm{b}\overline{\mathrm{b}}$ is reconstructed as a single, large radius jet and is identified using jet substructure and dedicated $\mathrm{b}$ tagging techniques. The method is validated with $\mathrm{Z}\to\mathrm{b}\overline{\mathrm{b}}$ decays. The $\mathrm{Z}\to\mathrm{b}\overline{\mathrm{b}}$ process is observed for the first time in the single-jet topology with a local significance of 5.1 standard deviations (5.8 expected). For a Higgs boson mass of 125 GeV, an excess of events above the expected background is observed (expected) with a local significance of 1.5 (0.7) standard deviations. The measured cross section times branching fraction for production via gluon fusion of $\mathrm{H} \rightarrow \mathrm{b}\overline{\mathrm{b}}$ with $p_\mathrm{T} > $450 GeV and in the pseudorapidity range $-$2.5 $< \eta <$ 2.5 is 74 $\pm$ 48 (stat) $_{-10}^{+17}$ (syst) fb, which is consistent within uncertainties with the standard model prediction.

0 data tables match query

Measurement of differential cross sections for single diffractive dissociation in $\sqrt{s} = 8$ TeV $pp$ collisions using the ATLAS ALFA spectrometer

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 02 (2020) 042, 2020.
Inspire Record 1762584 DOI 10.17182/hepdata.93063

A dedicated sample of Large Hadron Collider proton-proton collision data at centre-of-mass energy $\sqrt{s}=8$ TeV is used to study inclusive single diffractive dissociation, $pp \rightarrow Xp$. The intact final-state proton is reconstructed in the ATLAS ALFA forward spectrometer, while charged particles from the dissociated system $X$ are measured in the central detector components. The fiducial range of the measurement is $-4.0 < \log_{10} \xi < -1.6$ and $0.016 < |t| < 0.43 \ {\rm GeV^2}$, where $\xi$ is the proton fractional energy loss and $t$ is the squared four-momentum transfer. The total cross section integrated across the fiducial range is $1.59 \pm 0.13 \ {\rm mb}$. Cross sections are also measured differentially as functions of $\xi$, $t$, and $\Delta \eta$, a variable that characterises the rapidity gap separating the proton and the system $X$. The data are consistent with an exponential $t$ dependence, ${\rm d} \sigma / {\rm d} t \propto \text{e}^{Bt}$ with slope parameter $B = 7.65 \pm 0.34 \ {\rm GeV^{-2}}$. Interpreted in the framework of triple Regge phenomenology, the $\xi$ dependence leads to a pomeron intercept of $\alpha(0) = 1.07 \pm 0.09$.

0 data tables match query