Date

Double diffraction dissociation at the Fermilab Tevatron collider

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 87 (2001) 141802, 2001.
Inspire Record 557212 DOI 10.17182/hepdata.42921

We present results from a measurement of double diffraction dissociation in $\bar pp$ collisions at the Fermilab Tevatron collider. The production cross section for events with a central pseudorapidity gap of width $\Delta\eta^0>3$ (overlapping $\eta=0$) is found to be $4.43\pm 0.02{(stat)}{\pm 1.18}{(syst) mb}$ [$3.42\pm 0.01{(stat)}{\pm 1.09}{(syst) mb}$] at $\sqrt{s}=1800$ [630] GeV. Our results are compared with previous measurements and with predictions based on Regge theory and factorization.

1 data table match query

Cross sections for double diffractive production.


Diffraction dissociation in anti-p p collisions at s**(1/2) = 1.8-TeV

The E710 collaboration Amos, Norman A. ; Avila, C. ; Baker, W.F. ; et al.
Phys.Lett.B 301 (1993) 313-316, 1993.
Inspire Record 342944 DOI 10.17182/hepdata.28955

We have studied single diffraction dissociation ( p p→ p X ) in proton-antiproton collisions at √ s =1.8TeV, covering the ranges 3⪅ M X ⪅200 GeV and 0.05⪅| t |⪅0.11 (GeV/ c ) 2 . Parameterizing the production to be of the form dσ ( d t d M 2 X ) = (M 2 X ) −α exp (bt) , we obtain α = 1.13±0.07 and b = 10.5±1.8(GeV/ c ) −2 . The total single diffraction dissociation cross section is 2 σ SD =8.1±1.7 mb. Comparisons are made to previous lower energy data, and to an earlier measurement by us at the same energy.

1 data table match query

Total single diffraction cross section.


Observation of diffractive W boson production at the Tevatron

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.Lett. 78 (1997) 2698-2703, 1997.
Inspire Record 440095 DOI 10.17182/hepdata.42230

We report the first observation of diffractively produced W bosons. In a sample of W -> e nu events produced in p-barp collisions at sqrt{s}=1.8 TeV, we find an excess of events with a forward rapidity gap, which is attributed to diffraction. The probability that this excess is consistent with non-diffractive production is 1.1 10^{-4} (3.8 sigma). The relatively low fraction of W+Jet events observed within this excess implies that mainly quarks from the pomeron, which mediates diffraction, participate in W production. The diffractive to non-diffractive W production ratio is found to be R_W=(1.15 +/- 0.55)%.

1 data table match query

No description provided.


Exclusive Inelastic Final States in p anti-p Interactions at 49-GeV/c

Zissa, D.E. ; Barnes, V.E. ; Carmony, D.D. ; et al.
Phys.Rev.D 22 (1980) 2642, 1980.
Inspire Record 12972 DOI 10.17182/hepdata.24162

We have measured the total and subchannel cross sections for the reaction p¯p→p¯pπ+π− at 49 GeV/c. This reaction is dominated by two production mechanisms, diffraction and meson exchange. In addition, we have measured the total cross section for p¯p→p¯p2π+2π− and compared it to values at other momenta and with the corresponding pp interaction. Within the present statistics, no significant amount of exclusive annihilation is found into two, four, and six charged pions.

1 data table match query

No description provided.


THE STUDY OF DIFFRACTIVE DISSOCIATION IN THE REACTION anti-p p ---> anti-p p pi+ pi- AT 22.4-GeV/c

The Dubna-Alma Ata-Helsinki-Prague collaboration Batyunya, B.V. ; Boguslavsky, I.V. ; Dashian, N.B. ; et al.
JINR-E1-82-415, 1982.
Inspire Record 179201 DOI 10.17182/hepdata.9875

None

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Study of s-Channel and t-Channel Helicity Conservation in the Diffractive Part of the Reaction pi+- p --> pi (n pi) at 16-GeV/c

The Aachen-Berlin-Bonn-CERN-Heidelberg collaboration Grässler, H. ; Kirk, H. ; Otter, G. ; et al.
Nucl.Phys.B 95 (1975) 1-11, 1975.
Inspire Record 99495 DOI 10.17182/hepdata.31974

By means of an isospin analysis of the reaction π ± p→ π (N π ) at 16 GeV/ c we have determined the decay angular distributions of the N π system with I= 1 2 produced by isospin zero exchange. Helicity conservation is not observed in the t -channel for the N π mass region below 1.6 GeV, where diffraction dissociation of the proton is supposed to dominate. There are indications for approximate t -channel helicity conservation for N ∗ (1690) production. In the helicity frame, the experimental data are not in agreement with s -channel helicity conservation over the whole N π mass range investigated. Thus the diffractive process N→N π differs both from the process N→N ππ (or π → πππ and K→K ππ ) which approximately conserves t -channel helicity and from the elastic scattering N→N which conserves helicity in the s -channel.

1 data table match query

No description provided.


Search for diffractive charm production in 800-GeV/c proton - silicon interactions

The Fermilab E653 collaboration Kodama, K. ; Ushida, N. ; Mokhtarani, A. ; et al.
Phys.Lett.B 316 (1993) 188-196, 1993.
Inspire Record 35969 DOI 10.17182/hepdata.28848

A search for charm production in the coherent diffractive dissociation reaction pSi→XSi was carried out for the modes D 0 → K − π + , D 0 → K − π + π + π − , and D + → K − π + π + . No charm signals were observed, and the 90% confidence level upper limit for coherent charm pair production was determined to be 26 μ b per silicon nucleus. The results are interpreted as an upper limit of 0.2% on the amount of intrinsic charm in the proton.

1 data table match query

90 pct CL upper limits.


DIFFRACTIVE K0 LAMBDA0 PRODUCTION BY NEUTRONS WITH 40-GeV/c MEAN MOMENTUM

The BIS-2 collaboration Aleev, A.N. ; Arefev, V.A. ; Balandin, V.P. ; et al.
PHE 83-1, 1983.
Inspire Record 190017 DOI 10.17182/hepdata.31222

None

1 data table match query

No description provided.


PRISM Plot Analysis of the Reaction pi- p --> p pi+ pi- pi- at 16-GeV/c

The Aachen-Berlin-Bonn-CERN-Cracow-Heidelberg-Warsaw collaboration Grassler, H. ; Honecker, R. ; Kirk, H.G. ; et al.
Nucl.Phys.B 113 (1976) 365-377, 1976.
Inspire Record 109661 DOI 10.17182/hepdata.35583

A prism plot analysis of the reaction π − p→p π + π − π − at 16 GeV/ c has been made and the results are compared with those obtained in a similar analysis of the reaction π + p→ p π + π + π − at the same energy. The three dominating reaction mechanisms (pion dissociation, reggeon exchange, proton diffraction dissociation) appear to be well separated, while considerable residual overlaps are present inside these classes. The prism plot method is discussed as a means for detecting hidden structures and some evidence is presented for a broad three-pion enhancement around 2 GeV decaying primarily into ϱ 0 π − .

1 data table match query

A4(1900) IS CALLED A*(1800) BY AUTHORS. PI+ P CROSS SECTIONS PREVIOUSLY PUBLISHED IN M. DEUTSCHMANN ET AL., NP B99, 397 (1975).


PRISM Plot Analysis of the Reaction pi+ p --> p pi+ pi+ pi- at 16-GeV/c

The AACHEN-BERLIN-BONN-CERN-CRACOW-HEIDELBERG-WARSAW collaboration Deutschmann, M. ; Kirk, H. ; Sixel, P. ; et al.
Nucl.Phys.B 99 (1975) 397-419, 1975.
Inspire Record 104134 DOI 10.17182/hepdata.35967

We have analysed the reaction π + p → pπ + π + π − at 16 GeV/c by means of the prism plot analysis (PPA) as proposed by Pless et al. We have separated ten reaction channels contributing to the final state pπ + π + π − and present the results in terms of partial and differential cross sections, invariant mass and decay angular distributions. We show that the PPA is a self-controlling method which is demonstrated by the emergence of a broad (3π) + enhancement around 1800 MeV decaying into ρ 0 π + .

1 data table match query

PARTIAL CROSS SECTIONS FOR THE (P PI+ PI+ PI-) FINAL STATE.