We present high-statistics results on the reactions a+p→c+X where a and c can be any of π±, K±, p, or p¯. The data were taken at 100 and 175 GeV/c incident momenta using the Fermilab Single-Arm Spectrometer operated over the kinematic range 0.2<x<1.0 and pt<~1.0 GeV/c. Investigating the x dependence of the data, we find agreement with a quark-parton picture, namely the cross sections have a power-law behavior in 1−x independent of pbeam and pt.
An experiment using the Fermilab Single Arm Spectrometer (SAS) facility and an associated nonmagnetic vertex detector studied the reactions a+p→c+X, where a and c were π±, K±, p, or p¯. Extensive measurements were made at 100 and 175 GeV/c beam momenta with the outgoing hadrons detected in the SAS covering a kinematic range 0.12<x<1.0 and pT<1.25 GeV/c. Additional data covering a more restricted range in x were also gathered at 70 GeV/c incident momentum. In this high-statistics experiment, the identification of both the incoming and outgoing charged hadrons were made with a total of eight Čerenkov counters. New and extensive single-particle inclusive data for charged-particle production in low-pT hadronic fragmentation are presented. The average associated charged-particle multiplicity and pseudorapidity distributions are also given.
Data are presented on the inclusive production of π±, K±, p, and p¯ for π+, K+, and protons incident on nuclear targets at 100 GeV. The results cover the kinematic range 30≤P≤88 GeV/c for Pt=0.3 and 0.5 GeV/c. The observed A dependence of the invariant cross sections exhibits remarkable simplicity, which does not naturally follow from current models of particle production. The results show that the hypothesis of limiting fragmentation can be extended to include collisions with nuclei.
The differential cross sections for the elastic scattering of π+, π−, K+, K−, p, and p¯ on protons have been measured in the t interval -0.04 to -0.75 GeV2 at five momenta: 50, 70, 100, 140, and 175 GeV/c. The t distributions have been parametrized by the quadratic exponential form dσdt=Aexp(B|t|+C|t|2) and the energy dependence has been described in terms of a single-pole Regge model. The pp and K+p diffraction peaks are found to shrink with α′∼0.20 and ∼0.15 GeV−2, respectively. The p¯p diffraction peak is antishrinking while π±p and K−p are relatively energy-independent. Total elastic cross sections are calculated by integrating the differential cross sections. The rapid decline in σel observed at low energies has stopped and all six reactions approach relatively constant values of σel. The ratio of σelσtot approaches a constant value for all six reactions by 100 GeV, consistent with the predictions of the geometric-scaling hypothesis. This ratio is ∼0.18 for pp and p¯p, and ∼0.12-0.14 for π±p and K±p. A crossover is observed between K+p and K−p scattering at |t|∼0.19 GeV2, and between pp and p¯p at |t|∼0.11 GeV2. Inversion of the cross sections into impact-parameter space shows that protons are quite transparent to mesons even in head-on collisions. The probability for a meson to pass through a proton head-on without interaction inelastically is ∼20% while it is only ∼6% for an incident proton or antiproton. Finally, the results are compared with various quark-model predictions.
Results are presented on π±p, K±p, and p±p elastic scattering measured with an apparatus having acceptance of 0.5<−t<2.5 (GeV/c)2 and 0.9<−t<11 (GeV/c)2 at 100 and 200 GeV/c, respectively. A diffractionlike dip is seen for the first time in the π−p t distribution at −t=4 (GeV/c)2. All meson-proton cross sections are found to be similar in the range 1<−t<2.5 (GeV/c)2, although some small systematic differences are observed. Cross sections for pp and p―p are compared with previous data.