The production of dijets in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of $61 \pbi$. The dijet cross section has been measured for virtualities of the exchanged virtual photon, $5 < Q^2 < 100 \gev^2$, and $\gamma^{*} p$ centre-of-mass energies, 100 < W < 250 GeV. The jets, identified using the inclusive k_{T} algorithm in the $\gamma^* p$ frame, were required to have a transverse energy $E^*_{T, \rm jet} > 4 \gev$ and the jet with the highest transverse energy was required to have $E^*_{T,\rm jet} > 5 \gev$. All jets were required to be in the pseudorapidity range $-3.5 < \eta^*_{\rm jet} < 0$. The differential cross sections are compared to leading-order predictions and next-to-leading-order QCD calculations based on recent diffractive parton densities extracted from inclusive diffractive deep inelastic scattering data.
Total di-jet cross section SIG as a function of Q**2 .
Distribution of D(SIG)/DQ**2 as a function of Q**2 .
Distribution of D(SIG)/DW as a function of W .
Diffractive photoproduction of D*+/-(2010) mesons was measured with the ZEUS detector at the ep collider HERA, using an integrated luminosity of 78.6 pb^{-1}. The D* mesons were reconstructed in the kinematic range: transverse momentum p_T(D*) > 1.9 GeV and pseudorapidity |eta(D*)| < 1.6, using the decay D*+ -> D0 pi+_s followed by D0 -> K- pi+ (+c.c.). Diffractive events were identified by a large gap in pseudorapidity between the produced hadronic state and the outgoing proton. Cross sections are reported for photon-proton centre-of-mass energies in the range 130 < W < 300 GeV and for photon virtualities Q^2 < 1 GeV^2, in two ranges of the Pomeron fractional momentum x_pom < 0.035 and x_pom < 0.01. The relative contribution of diffractive events to the inclusive D*+/-(2010) photoproduction cross section is about 6%. The data are in agreement with perturbative QCD calculations based on various parameterisations of diffractive parton distribution functions. The results are consistent with diffractive QCD factorisation.
Total cross section integrated over the given kinematic range.
Ratio of diffractive to inclusive D* cross section.
Differential cross sections for diffractive photoproduction of D*+- mesons as a function of X(NAME=POMERON).
The inelastic production of J/psi mesons in e p collisions has been studied with the ZEUS detector at HERA using an integrated luminosity of 109 pb-1. The J/psi mesons were identified using the decay channel J/psi -> mu+ mu-. The measurements were performed in the kinematic range 2 < Q^2< 80 Gev^2, 50 < W < 250 Gev, 0.2 < z <0.9 and -1.6 < Ylab < 1.3, where Q^2 is the virtuality of the exchanged photon, W is the photon-proton centre-of-mass energy, z is the fraction of the photon energy carried by the J/psi meson in the proton rest frame and Ylab is the rapidity of the J/psi in the laboratory frame. The measured cross sections are compared to theoretical predictions within the non-relativistic QCD framework including colour-singlet and colour-octet contributions, as well as to predictions based on the kT-factorisation approach. Calculations of the colour-singlet process generally agree with the data, whereas inclusion of colour-octet terms spoils this agreement.
Integrated cross section for the process E P --> E J/PSI X.
Differential cross section as a function of Z.
Differential cross section as a function of W.
The photoproduction of $D^{*\pm} (2010)$ mesons associated with a leading neutron has been observed with the ZEUS detector in $ep$ collisions at HERA using an integrated luminosity of 80 pb$^{-1}$. The neutron carries a large fraction, {$x_L>0.2$}, of the incoming proton beam energy and is detected at very small production angles, {$\theta_n<0.8$ mrad}, an indication of peripheral scattering. The $D^*$ meson is centrally produced with pseudorapidity {$|\eta|<1.5$}, and has a transverse momentum {$p_{\it T} > 1.9$ GeV}, which is large compared to the average transverse momentum of the neutron of 0.22 GeV. The ratio of neutron-tagged to inclusive $D^*$ production is $8.85\pm 0.93({\rm stat.})^{+0.48}_{-0.61}({\rm syst.})\%$ in the photon-proton center-of-mass energy range {$130
Integrated cross section. The first DSYS error includes the uncertainty in the luminosity and the second DSYS error is due to the knowledge of the branching ratios.
No description provided.
No description provided.
Deep inelastic electron-photon scattering is studied in the Q**2 range from 1.2 to 30 GeV**2 using the LEP1 data taken with the ALEPH, L3 and OPAL detectors at centre-of-mass energies close to the mass of the Z boson. Distributions of the measured hadronic final state are corrected to the hadron level and compared to the predictions of the HERWIG and PHOJET Monte Carlo models. For large regions in most of the distributions studied the results of the different experiments agree with one another. However, significant differences are found between the data and the models. Therefore the combined LEP data serve as an important input to improve on the Monte Carlo models.
The individual differential cross sections (DSIG/DW) in the low Q**2 regions for the three experiments.. The data are corrected using the HERWIG-kt model.
The combined differential cross sections (DSIG/DW) separately for the low and high Q**2 regions. The data are corrected using the HERWIG-kt model.
The combined differential cross sections (DSIG/DW) separately for the low and high Q**2 regions. The data are corrected using the PHOJET model.