We present a measurement of two-particle angular correlations in proton-proton collisions at sqrt(s) = 900 GeV and 7 TeV. The collision events were collected during 2009 and 2010 with the ATLAS detector at the Large Hadron Collider using a single-arm minimum bias trigger. Correlations are measured for charged particles produced in the kinematic range of transverse momentum pT > 100 MeV and pseudorapidity |eta| < 2.5. A complex structure in pseudorapidity and azimuth is observed at both collision energies. Results are compared to Pythia 8 and Herwig++ as well as to the AMBT2B, DW and Perugia 2011 tunes of Pythia 6. The data are not satisfactorily described by any of these models.
Corrected two particle RCORR distribution as a function of Delta(ETARAP) obtained by integrating the foreground and background distributions over Delta(PHI) between 0 and PI.
Corrected two particle RCORR distribution as a function of Delta(ETARAP) obtained by integrating the foreground and background distributions over Delta(PHI) between 0 and PI/2.
Corrected two particle RCORR distribution as a function of Delta(ETARAP) obtained by integrating the foreground and background distributions over Delta(PHI) between PI/2 and PI.
Using inelastic proton-proton interactions at sqrt(s) = 900 GeV and 7 TeV, recorded by the ATLAS detector at the LHC, measurements have been made of the correlations between forward and backward charged-particle multiplicities and, for the first time, between forward and backward charged-particle summed transverse momentum. In addition, jet-like structure in the events is studied by means of azimuthal distributions of charged particles relative to the charged particle with highest transverse momentum in a selected kinematic region of the event. The results are compared with predictions from tunes of the PYTHIA and HERWIG++ Monte Carlo generators, which in most cases are found to provide a reasonable description of the data.
$\sqrt{s} = 900$ GeV, $p_T > 500 $ MeV, $|\eta|<1$.
$\sqrt{s} = 7$ TeV, $p_T > 500 $ MeV, $|\eta|<1$.
$\sqrt{s} = 900$ GeV, $p_T > 500 $ MeV, $|\eta|<2$.
A search for production of supersymmetric particles in final states containing jets, missing transverse momentum, and at least one hadronically decaying tau lepton is presented. The data were recorded by the ATLAS experiment in sqrt(s) = 7 TeV proton-proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 2.05 fb-1 of data. The results are interpreted in the context of gauge mediated supersymmetry breaking models with Mmess = 250 TeV, N5 = 3, mu > 0, and Cgrav = 1. The production of supersymmetric particles is excluded at 95% C.L. up to a supersymmetry breaking scale Lambda = 30 Tev, independent of tan(beta), and up to Lambda = 43 TeV for large tan(beta).
Distribution of the missing transverse energy before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
Distribution of the tau pt before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
Distribution of the effective mass before final selection requirement on the effective mass. Tabulated are the observed Data events, the Standard Model predictions and the expected rates for two signal scenarios with Lambda=30TeV / tan(beta) = 20 and Lambda=40GeV / tan(beta)=30 respectively.
The results of a search for pair production of the lighter scalar partners of top quarks in 2.05 fb-1 of pp collisions at sqrt(s) =7 TeV using the ATLAS experiment at the LHC are reported. Scalar top quarks are searched for in events with two same flavour opposite-sign leptons (electrons or muons) with invariant mass consistent with the Z boson mass, large missing transverse momentum and jets in the final state. At least one of the jets is identified as originating from a b-quark. No excess over Standard Model expectations is found. The results are interpreted in the framework of R-parity conserving, gauge mediated Supersymmetry breaking `natural' scenarios, where the neutralino is the next-to-lightest supersymmetric particle. Scalar top quark masses up to 310 GeV are excluded for the lightest neutralino mass between 115 GeV and 230 GeV at 95% confidence level, reaching an exclusion of the scalar top quark mass of 330 GeV for the lightest neutralino mass of 190 GeV. Scalar top quark masses below 240 GeV are excluded for all values of the lightest neutralino mass above the Z boson mass.
The missing ET distribution from the combined EE and MUMU data for SR1. Tabulated are the observed Data rates and the Standard Model predictions as well as the distributions expected for two signal scenarios, both with an STOP mass of 250 GeV, and NEUTRALINO1 masses of 100 GeV and 220 GeV respectively.
The number of b-tagged jets for SR1 for the combined EE and MUMU channels. Tabulated are the observed Data rates and the Standard Model predictions as well as the distributions expected for two signal scenarios, both with an STOP mass of 250 GeV, and NEUTRALINO1 masses of 100 GeV and 220 GeV respectively.
The distrubution of leading jet pT for SR1 for the combined EE and MUMU channels. Tabulated are the observed Data rates and the Standard Model predictions as well as the distributions expected for two signal scenarios, both with an STOP mass of 250 GeV, and NEUTRALINO1 masses of 100 GeV and 220 GeV respectively. The last pT bin includes the number of overflow events for both data abd SM expectation.
A search for the weak production of charginos and neutralinos into final states with three electrons or muons and missing transverse momentum is presented. The analysis uses 2.06 fb^-1 of sqrt(s) = 7 TeV proton-proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with standard model expectations in two signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric and simplified models. For the simplified models, degenerate lightest chargino and next-to-lightest neutralino masses up to 300 GeV are excluded for mass differences from the lightest neutralino up to 300 GeV.
Transverse momentum distribution for the first leading lepton for events in the SR1 signal region for DATA and SM predictions.
Transverse momentum distribution for the first leading lepton for events in the SR2 signal region for DATA and SM predictions.
Transverse momentum distribution for the second leading lepton for events in the SR1 signal region for DATA and SM predictions.
This paper presents a search for the t-channel exchange of an R-parity violating scalar top quark (\={t}) in the emu continuum using 2.1/fb of data collected by the ATLAS detector in sqrt(s) = 7 TeV pp collisions at the Large Hadron Collider. Data are found to be consistent with the expectation from the Standard Model backgrounds. Limits on R-parity-violating couplings at 95% C.L. are calculated as a function of the scalar top mass (m_{\={t}}). The upper limits on the production cross section for pp->emuX, through the t-channel exchange of a scalar top quark, ranges from 170 fb for m_{\={t}}=95 GeV to 30 fb for m_{\={t}}=1000 GeV.
The observed E-MU invariant mass distribution plus SM background and signal predicitons for a n stop mass of 95 GeV.
Information about the signal samples used.
The ratios of the observed and expected upper cross section limits to the theoretical cross sections as a function of the scalar top mass.
Inclusive-jet cross sections have been measured in the reaction ep->e+jet+X for photon virtuality Q2 < 1 GeV2 and gamma-p centre-of-mass energies in the region 142 < W(gamma-p) < 293 GeV with the ZEUS detector at HERA using an integrated luminosity of 300 pb-1. Jets were identified using the kT, anti-kT or SIScone jet algorithms in the laboratory frame. Single-differential cross sections are presented as functions of the jet transverse energy, ETjet, and pseudorapidity, etajet, for jets with ETjet > 17 GeV and -1 < etajet < 2.5. In addition, measurements of double-differential inclusive-jet cross sections are presented as functions of ETjet in different regions of etajet. Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low ETjet and high etajet. The influence of non-perturbative effects not related to hadronisation was studied. Measurements of the ratios of cross sections using different jet algorithms are also presented; the measured ratios are well described by calculations including up to O(alphas2) terms. Values of alphas(Mz) were extracted from the measurements and the energy-scale dependence of the coupling was determined. The value of alphas(Mz) extracted from the measurements based on the kT jet algorithm is alphas(Mz) = 0.1206 +0.0023 -0.0022 (exp.) +0.0042 -0.0035 (th.); the results from the anti-kT and SIScone algorithms are compatible with this value and have a similar precision.
The measured differential cross section based on the kT jet algorithm in the kinematic region Q^2<1 GeV^2 and 142 < W < 293 GeV as a function of the jet ET for jet ETARAP -1 TO 2.5 . The first (sys) error is the uncorrelated systematic error and the second is the jet-energy scale uncertainty.
The measured differential cross section based on the kT jet algorithm in the kinematic region Q^2<1 GeV^2 and 142 < W < 293 GeV as a function of the jet ETARAP for jet ET > 17 GeV. The first (sys) error is the uncorrelated systematic error and the second is the jet-energy scale uncertainty.
The measured differential cross section based on the kT jet algorithm in the kinematic region Q^2<1 GeV^2 and 142 < W < 293 GeV as a function of the jet ETARAP for jet ET > 21 GeV. The first (sys) error is the uncorrelated systematic error and the second is the jet-energy scale uncertainty.
A precise measurement of the cross section of the process $e^+e^-\to\pi^+\pi^-(\gamma)$ from threshold to an energy of 3GeV is obtained with the initial-state radiation (ISR) method using 232fb$^{-1}$ of data collected with the BaBar detector at $e^+e^-$ center-of-mass energies near 10.6GeV. The ISR luminosity is determined from a study of the leptonic process $e^+e^-\to\mu^+\mu^-(\gamma)\gamma_{\rm ISR}$, which is found to agree with the next-to-leading-order QED prediction to within 1.1%. The cross section for the process $e^+e^-\to\pi^+\pi^-(\gamma)$ is obtained with a systematic uncertainty of 0.5% in the dominant $\rho$ resonance region. The leading-order hadronic contribution to the muon magnetic anomaly calculated using the measured $\pi\pi$ cross section from threshold to 1.8GeV is $(514.1 \pm 2.2({\rm stat}) \pm 3.1({\rm syst}))\times 10^{-10}$.
Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ The cross section values (nb) for 337 CM energy intervals (GeV) from 0.3 to 3 GeV. The cross section is bare (excluding vacuum polarization) and includes the emission of final state photons. ***WARNING*** The quoted errors are from the diagonal elements of the statistical covariance matrix (reported on the Table titled "Bare cross-section statistical covariance") and added quadratically with the systematic uncertainties (reported in the Table titled "Bare cross-section systematic uncertainties"). These errors can be used when plotting the results as they are representative of the precision achieved. However, any calculation involving the cross section over some energy range MUST use, to be meaningful, the full statistical covariance matrix and the proper correlations of the systematic uncertainties. ***WARNING*** The Bare cross-section statistical covariance is reported as additional resource in YAML, since its size exceeds the maximum size of 10 MB for the library hepdata_lib. It is a statistical covariance matrix, for 337x337 CM energy intervals (GeV), from 0.3 to 3 GeV, matching the ones of this table.
Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ systematic uncertainties contributions and total systematic uncertainties, for 337 CM energy intervals (GeV), from 0.3 to 3 GeV. All systematics contributions are each 100% correlated in all energy bins.
Bare cross-section $e^+e^-\rightarrow\pi^+\pi^-(\gamma)$ statistical covariance matrix, for 337x337 CM energy intervals (GeV), from 0.3 to 3 GeV.
Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb^-1 of pp collision data at sqrt(s) = 7 TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from >=6 to >=9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m_0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV.
Distribution of the variable ETmiss/sqrt(HT) for events with >= 7 jets each having transverse momentum > 55 GeV. The table gives the number of observed data events, the expected standard model backgroud prediction and the signal expected from the SUSY signal process.
Distribution of the variable ETmiss/sqrt(HT) for events with >= 6 jets each having transverse momentum > 80 GeV. The table gives the number of observed data events, the expected standard model backgroud prediction and the signal expected from the SUSY signal process.
Distribution of the variable ETmiss/sqrt(HT) for events with >= 8 jets each having transverse momentum > 55 GeV. The table gives the number of observed data events, the expected standard model backgroud prediction and the signal expected from the SUSY signal process.
Measurements are presented of the properties of high transverse momentum jets, produced in proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV. The data correspond to an integrated luminosity of 35 pb^-1 and were collected with the ATLAS detector in 2010. Jet mass, width, eccentricity, planar flow and angularity are measured for jets reconstructed using the anti-kt algorithm with distance parameters R = 0.6 and 1.0, with transverse momentum pT > 300 GeV and pseudorapidity |eta| < 2. The measurements are compared to the expectations of Monte Carlo generators that match leading-logarithmic parton showers to leading-order, or next-to-leading-order, matrix elements. The generators describe the general features of the jets, although discrepancies are observed in some distributions.
The jet mass distribution for R=0.6 jets in the full 2010 dataset corrected for pileup and corrected to the particle level.
The jet mass distribution for R=1.0 jets in the full 2010 dataset corrected for pileup and corrected to the particle level.
The jet width distribution for R=0.6 jets in the full 2010 dataset corrected for pileup and corrected to the particle level.