A detailed study of high-p(T) neutral pion suppression and azimuthal anisotropy in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 76 (2007) 034904, 2007.
Inspire Record 731134 DOI 10.17182/hepdata.141853

Measurements of neutral pion production at midrapidity in sqrt(s_NN) = 200 GeV Au+Au collisions as a function of transverse momentum, p_T, collision centrality, and angle with respect to reaction plane are presented. The data represent the final pi^0 results from the PHENIX experiment for the first RHIC Au+Au run at design center-of-mass-energy. They include additional data obtained using the PHENIX Level-2 trigger with more than a factor of three increase in statistics over previously published results for p_T > 6 GeV/c. We evaluate the suppression in the yield of high-p_T pi^0's relative to point-like scaling expectations using the nuclear modification factor R_AA. We present the p_T dependence of R_AA for nine bins in collision centrality. We separately integrate R_AA over larger p_T bins to show more precisely the centrality dependence of the high-p_T suppression. We then evaluate the dependence of the high-p_T suppression on the emission angle \Delta\phi of the pions with respect to event reaction plane for 7 bins in collision centrality. We show that the yields of high-p_T pi^0's vary strongly with \Delta\phi, consistent with prior measurements. We show that this variation persists in the most peripheral bin accessible in this analysis. For the peripheral bins we observe no suppression for neutral pions produced aligned with the reaction plane while the yield of pi^0's produced perpendicular to the reaction plane is suppressed by more than a factor of 2. We analyze the combined centrality and \Delta\phi dependence of the pi^0 suppression in different p_T bins using different possible descriptions of parton energy loss dependence on jet path-length averages to determine whether a single geometric picture can explain the observed suppression pattern.

9 data tables

Neutral pion invariant yields as a function of $p_T$ measured in minimum bias and 9 centrality classes in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Neutral pion invariant yields as a function of $p_T$ measured in minimum bias and 9 centrality classes in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Neutral pion invariant yields as a function of $p_T$ measured in minimum bias and 9 centrality classes in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

More…

Production of omega mesons at large transverse momenta in p + p and d + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 75 (2007) 051902, 2007.
Inspire Record 732097 DOI 10.17182/hepdata.143461

The PHENIX experiment at RHIC has measured the invariant cross section for omega-meson production at mid-rapidity in the transverse momentum range 2.5 < p_T < 9.25 GeV/c in p+p and d+Au collisions at sqrt(s_NN) = 200 GeV. Measurements in two decay channels (omega --> pi^0 pi^+ pi^- and omega --> pi^0 gamma) yield consistent results, and the reconstructed omega mass agrees with the accepted value within the p_T range of the measurements. The omega/pi^0 ratio is found to be 0.85 +/- 0.05(stat) +/- 0.09(sys) and 0.94 +/- 0.08(stat) +/- 0.12(sys) in p+p and d+Au collisions respectively, independent of p_T . The nuclear modification factor R_dA is 1.03 +/- 0.12(stat) +/- 0.21(sys) and 0.83 +/- 0.21(stat) +/- 0.17(sys) in minimum bias and central (0-20%) d+Au collisions, respectively.

16 data tables

Invariant cross section of $\omega$ production in $p$+$p$ and $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV measured in $\omega \rightarrow \pi^0\pi^+\pi^-$ and $\omega \rightarrow \pi^0\gamma$ decay channels.

Invariant cross section of $\omega$ production in $p$+$p$ and $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV measured in $\omega \rightarrow \pi^0\pi^+\pi^-$ and $\omega \rightarrow \pi^0\gamma$ decay channels.

Invariant cross section of $\omega$ production in $p$+$p$ and $d$+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV measured in $\omega \rightarrow \pi^0\pi^+\pi^-$ and $\omega \rightarrow \pi^0\gamma$ decay channels.

More…

Centrality dependence of pi0 and eta production at large transverse momentum in s(NN)**(1/2) = 200-GeV d + Au collisions.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 172302, 2007.
Inspire Record 729950 DOI 10.17182/hepdata.141813

The dependence of transverse momentum spectra of neutral pions and eta mesons with p_T <16 GeV/c and p_T < 12 GeV/c, respectively, on the centrality of the collision has been measured at mid-rapidity by the PHENIX experiment at RHIC in d+Au collisions at sqrt(s_(NN)) = 200 GeV. The measured yields are compared to those in p + p collisions at the same sqrt(s_(NN)) scaled by the number of underlying nucleon-nucleon collisions in d+Au. At all centralities the yield ratios show no suppression, in contrast to the strong suppression seen for central Au+Au collisions at RHIC. Only a weak p_T and centrality dependence can be observed.

10 data tables

Invariant yields at mid-rapidity for $\pi^0$ and $\eta$ in $d$+Au collisions as a function of $p_T$ for different centrality selections.

Invariant yields at mid-rapidity for $\pi^0$ and $\eta$ in $d$+Au collisions as a function of $p_T$ for different centrality selections.

Invariant yields at mid-rapidity for $\pi^0$ and $\eta$ in $d$+Au collisions as a function of $p_T$ for different centrality selections.

More…

Evidence for a long-range component in the pion emission source in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 98 (2007) 132301, 2007.
Inspire Record 717744 DOI 10.17182/hepdata.141649

Emission source functions are extracted from correlation functions constructed from charged pions produced at mid-rapidity in Au+Au collisions at sqrt(s_NN)=200 GeV. The source parameters extracted from these functions at low k_T, give first indications of a long tail for the pion emission source. The source extension cannot be explained solely by simple kinematic considerations. The possible role of a halo of secondary pions from resonance emissions is explored.

17 data tables

Correlation function, C(q) for $\pi^+\pi^+$ and $\pi^-\pi^-$ pairs.

Correlation function, C(q) for $\pi^+\pi^+$ and $\pi^-\pi^-$ pairs.

Correlation function, C(q) for $\pi^+\pi^+$ and $\pi^-\pi^-$ pairs.

More…

Nuclear effects on hadron production in d + Au and p + p collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 74 (2006) 024904, 2006.
Inspire Record 711951 DOI 10.17182/hepdata.141892

PHENIX has measured the centrality dependence of mid-rapidity pion, kaon and proton transverse momentum distributions in d+Au and p+p collisions at sqrt(s_NN) = 200 GeV. The p+p data provide a reference for nuclear effects in d+Au and previously measured Au+Au collisions. Hadron production is enhanced in d+Au, relative to independent nucleon-nucleon scattering, as was observed in lower energy collisions. The nuclear modification factor for (anti) protons is larger than that for pions. The difference increases with centrality, but is not sufficient to account for the abundance of baryon production observed in central Au+Au collisions at RHIC. The centrality dependence in d+Au shows that the nuclear modification factor increases gradually with the number of collisions suffered by each participant nucleon. We also present comparisons with lower energy data as well as with parton recombination and other theoretical models of nuclear effects on particle production.

6 data tables

Mean number of binary collisions, particpating nucleons from the Au nucleus, number of collisions per participating deuteron nucleon, and trigger bias corrections for the $d$+Au centrality bins.

Transverse momentum in GeV/$c$ for $\pi^{\pm}$.

Transverse momentum in GeV/$c$ for $\pi^{\pm}$.

More…

Measurement of transverse single-spin asymmetries for mid-rapidity production of neutral pions and charged hadrons in polarized p + p collisions at s**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.Lett. 95 (2005) 202001, 2005.
Inspire Record 687618 DOI 10.17182/hepdata.141097

The transverse single-spin asymmetries of neutral pions and non-identified charged hadrons have been measured at mid-rapidity in polarized proton-proton collisions at sqrt(s) = 200 GeV. The data cover a transverse momentum (p_T) range 0.5-5.0 GeV/c for charged hadrons and 1.0-5.0 GeV/c for neutral pions, at a Feynman-x (x_F) value of approximately zero. The asymmetries seen in this previously unexplored kinematic region are consistent with zero within statistical errors of a few percent. In addition, the inclusive charged hadron cross section at mid-rapidity from 0.5 < p_T < 7.0 GeV/c is presented and compared to NLO pQCD calculations. Successful description of the unpolarized cross section above ~2 GeV/c using NLO pQCD suggests that pQCD is applicable in the interpretation of the asymmetry results in the relevant kinematic range.

3 data tables

Invariant cross section vs. $p_T$ for the production of charged hadrons at mid-rapidity.

Mid-rapidity neutral pion transverse single-spin asymmetry, $A_N$, vs. transverse momentum.

Mid-rapidity charged hadron transverse single-spin asymmetry, $A_N$, vs. transverse momentum.


Measurement of single electron event anisotropy in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 72 (2005) 024901, 2005.
Inspire Record 676189 DOI 10.17182/hepdata.143206

The transverse momentum dependence of the azimuthal anisotropy parameter v_2, the second harmonic of the azimuthal distribution, for electrons at mid-rapidity (|eta| < 0.35) has been measured with the PHENIX detector in Au+Au collisions at sqrt(s_NN) = 200 GeV. The measurement was made with respect to the reaction plane defined at high rapidities (|eta| = 3.1 -- 3.9). From the result we have measured the v_2 of electrons from heavy flavor decay after subtraction of the v_2 of electrons from other sources such as photon conversions and Dalitz decay from light neutral mesons. We observe a non-zero single electron v_2 with a 90% confidence level in the intermediate p_T region.

1 data table

Transverse momentum dependence of inclusive electron $v_2$ and heavy quark electron $v_2$.


Production of Phi mesons at mid-rapidity in s**(1/2)(NN) = 200-GeV Au + Au collisions at RHIC.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 72 (2005) 014903, 2005.
Inspire Record 661505 DOI 10.17182/hepdata.141893

We present the first results of meson production in the K^+K^- decay channel from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by the PHENIX detector at RHIC. Precision resonance centroid and width values are extracted as a function of collision centrality. No significant variation from the PDG accepted values is observed. The transverse mass spectra are fitted with a linear exponential function for which the derived inverse slope parameter is seen to be constant as a function of centrality. These data are also fitted by a hydrodynamic model with the result that the freeze-out temperature and the expansion velocity values are consistent with the values previously derived from fitting single hadron inclusive data. As a function of transverse momentum the collisions scaled peripheral.to.central yield ratio RCP for the is comparable to that of pions rather than that of protons. This result lends support to theoretical models which distinguish between baryons and mesons instead of particle mass for explaining the anomalous proton yield.

22 data tables

Average number of participants and collisions in Au + Au reaction at RHIC for different centralities determined from a Glauber model.

$\phi$ meson mass centroid and width for minimum-bias Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Minimum-bias $dN/dy$ and $T$ for different subsystem combinations.

More…

Systematic studies of the centrality and s(NN)**(1/2) dependence of dE(T)/d mu and d N(ch)/d mu in heavy ion collisions at mid-rapidity.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 71 (2005) 034908, 2005.
Inspire Record 659749 DOI 10.17182/hepdata.142940

The PHENIX experiment at RHIC has measured transverse energy and charged particle multiplicity at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV as a function of centrality. The presented results are compared to measurements from other RHIC experiments, and experiments at lower energies. The sqrt(s_NN) dependence of dE_T/deta and dN_ch/deta per pair of participants is consistent with logarithmic scaling for the most central events. The centrality dependence of dE_T/deta and dN_ch/deta is similar at all measured incident energies. At RHIC energies the ratio of transverse energy per charged particle was found independent of centrality and growing slowly with sqrt(s_NN). A survey of comparisons between the data and available theoretical models is also presented.

13 data tables

$B$/$A$ ratio from the fit to the data.

$B$/$A$ ratio from the fit to the data.

Parameter $\alpha$ from the fit to the data.

More…

Jet structure of baryon excess in Au + Au collisions at s(NN)**(1/2) = 200-GeV.

The PHENIX collaboration Adler, S.S. ; Afanasiev, S. ; Aidala, C. ; et al.
Phys.Rev.C 71 (2005) 051902, 2005.
Inspire Record 656142 DOI 10.17182/hepdata.142148

Two particle correlations between identified meson and baryon trigger particles with 2.5 < p_T < 4.0 GeV/c and lower p_T charged hadrons have been measured at midrapidity by the PHENIX experiment at RHIC in p+p, d+Au and Au+Au collisions at sqrt(s_NN) = 200 GeV. The probability of finding a hadron near in azimuthal angle to the trigger particle is almost identical for leading mesons and baryons for non-central Au+Au. The yield for both trigger baryons and mesons is significantly higher in Au+Au than in p+p and d+Au, except for trigger baryons in central collisions. The baryon excess is likely to arise predominantly from hard scattering processes.

19 data tables

$\Delta\phi$ distributions for meson and baryon triggers with 2.5 < $p_T$ < 4.0 GeV/$c$ and associated charged hadrons with 1.7 < $p_T$ < 2.5 GeV/$c$ for five centralities in Au+Au collisions.

$\Delta\phi$ distributions for meson triggers with 2.5 < $p_T$ < 4.0 GeV/$c$ and associated charged hadrons with 1.7 < $p_T$ < 2.5 GeV/$c$ in $d$+Au collisions.

$\Delta\phi$ distributions unidentified triggers with 2.5 < $p_T$ < 4.0 GeV/$c$ and associated charged hadrons with 1.7 < $p_T$ < 2.5 GeV/$c$ in $p$+$p$ collisions.

More…