Measurements of inclusive transverse-momentum spectra for charged particles produced in proton-antiproton collisions at √2 of 630 and 1800 GeV are presented and compared with data taken at lower energies.
No description provided.
No description provided.
Results of fit to invariant cross section of the form AP0**N/(PT + P0)**N.
Antiproton- 3 He annihilation events at rest have been detected using a self-shunted streamer chamber. The ratio of the cross section for annihilation on neutrons and on protons has been measured (0.467 ± 0.035). It is compared with other results from annihilation on free nucleons, deuterium, 3 He and 4 He. The low value of the ratio seems to indicate a strong isospin dependence of the antinucleon-nucleon P-wave amplitude.
No description provided.
No description provided.
No description provided.
The Crystal Ball Collaboration has measured the energy spectrum of electrons from semileptonicB meson decays at thee+e− storage ring DORIS II. Branching ratios and weak mixing angles of the Kobayashi-Maskawa matrix are determined using several models for the hadronic matrix elements. We obtain the branching ratio for semileptonic.B decays to charmed states BR(B→evXc)=(11.7±0.4±1.0)%. Our result for the corresponding Kobayashi-Maskawa matrix element is |Vcb|=0.052±0.006. The model dependence of both results is included in the error. We have not observed semileptonicB decays to non-charmed mesons. Analyzing the measured electron spectrum above 2.4 GeV, where nob→c decays contribute, we find BR(B→evXu)/BR(B→evXc)<6.5% at the 90% confidence level. This corresponds to an upper limit |Vub/Vcb|<0.21.
The errors quoted are statistical only.
We used CR39 plastic nuclear track detectors (C12H18O7) in combination with automatic track measurement techniques to determine total charge changing and partial cross sections for the production of fragments of chargeZ F =6 toZ F =15 in collisions of32S beam nuclei at energies of 0.7, 1.2 and 200 GeV/nucleon in targets H, C, CR39, CH2, Al, Cu, Ag and Pb. By application of factorization rules measured partial cross sections are separated into pure nuclear and electromagnetic components. Total and partial cross sections for electromagnetic dissociation are compared with theoretical models. The energy dependence of pure nuclear cross sections is investigated.
No description provided.
NUCLEUS=12C 18H 7O.
NUCLEUS=18C 38H 7O.
Transverse-energy distributions have been measured for the collisions of the 32 S nucleus with Al, Ag, W, Pt, Pb, and U target nuclei, at an incident energy of 200 GeV per nucleon. The shapes of these distribution reflect the geometry of the collisions, including the deformation effects. For central collisions, the transverse-energy production in the region −0.1< η lab <2.9 increases approximately as A 0.5 , where A is the atomic mass number of the target. This increase is accompanied by a relative depletion in the forward region η lab > 2.9. These results are compared with those obtained under similar conditions with incident 16 O nuclei. A comparison is also made with the predictions of a Monte Carlo generator based on the dual parton model. Finally, we give estimates of the energy density reached and its dependence on the atomic mass number of the projectile.
No description provided.
No description provided.
No description provided.
None
No description provided.
Total cross section (4PIA0). Errors contain systematics. Calculated using data from De Sanctis et al., PR C34(86)413, combined with this work.
The e + e − → π + π − cross section has been measured from about 280 events (an order of magnitude more than the previous world statistics) in the energy interval 1.35 ⩽ s ⩽ 2.4 GeV with the DM2 detector at DCI. The pion squared form factor | F π | 2 shows a deep minimum around 1.6 GeV/ c 2 and is better fit under the hypothesis of two ϱ-like resonance ⋍0.25 GeV/ c 2 wide with 1.42 and 1.77 GeV/ c 2 masses.
Statistical errors only.
The reaction γγ → ϱ + ϱ − → π + π − π 0 π 0 has been studied with the ARGUS detector at the e + e − storage ring DORIS II at DESY. Near threshold, the cross section for this reaction is about four times smaller than for the reaction γγ → ϱ 0 ϱ 0 .
Data read from graph.
Data read from graph.
Data read from graph.
We report results from a measurement of antiproton-proton and proton-proton small-angle elastic scattering at √ s = 24.3 GeV in the range 0.001 ⩽ | t | ⩽ 0.06 (GeV/ c ) 2 . The measurement was performed at the CERN p p Collider by using silicon detectors to observe protons recoiling from a hydrogen cluster-jet target intercepting the stored p and p beams. Fits to the measured differential cross sections yield the ratio of the real to the imaginary part of the forward nuclear scattering amplitude ρ and the nuclear slope parameter b for both p p and pp. We find that the difference Δρ = ρ ( p p ) − ρ( pp ) = 0.031 ± 0.010 agrees with conventional fits and disagrees with the “odderon” fit designed to accommodate the recent UA4 measurement of ρ( p p) at 546 GeV.
Data requested from authors.
No description provided.
Nuclear slopes fixed to world average.
We have searched for resonance production in the reaction γγ→Ks0Kπ. No signal was found for theηc and an upper limit for the radiative with\(\Gamma _{\gamma \gamma }^{\eta _c } \) keV (95% c.l.) is obtained. For the glueball candidate η(1440) (previouslyi) the upper limit\(\Gamma _{\gamma \gamma }^{\eta (1440)} B(\eta (1440) \to K\bar K\pi )< 1.2keV(95\% c.l.)\) is derived. In the tagged data sample resonance formation of a spin 1 state at 1420 MeV is observed, which is absent in the untagged data. The mass and width of this state are consistent with those of thef1(1420); an analysis of decay angular distributions favours positive parity.
Data read from graph.. Additional overall systematic error decreasing from 25% in the lowest mass bins to 15% for M > 2.0 GeV.