From the measurement of e + e - pairs from the reaction p̄p→e + e - at the CERN-ISR, using an antiproton beam and a hydrogen jet target, we derived upper limits for the proton magnetic form factor in the time-like region at Q 2 ⋍8.9( GeV c ) 2 and Q 2 ⋍12.5( GeV c ) 2 .
No description provided.
An analysis of the Λ p p system produced forward in the reaction K p → Λ p p at 18.5 GeV/ c is presented. The data come from an experiment using the CERN Ω′ spectrometer. Structures are observed in the Λ p mass spectrum and in the double moments H LMlm describing the decay of the Λ p system and the subsequent Λ decay, for L ⩽ 8. A partial wave analysis interprets these structures as resonances of spin parities 2 − and 3 + , masses and widths M = 2200 ± 40 MeV, Γ = 150 ± 30 MeV and M = 2330 ± 40 MeV, Γ = 150 ± 30 MeV respectively.
UNCORRECTED DISTRIBUTION.
FULLY CORRECTED CROSS SECTION.
CROSS SECTIONS FOR RESONANCES. BREIT WIGNER FITTED WITH NO ADDITIONAL BACKGROUND.
Data on the reactions π − p → p π − , p p → π + π − , K − p → pK and p p → p p at 8 and 12 GeV/ c are presented. Our results agree with line reversal symmetry (between π − p → p π − and p p → π + π − ), Regge pole behaviour for non-exotic reactions ( π − p → p π − , p p → π + π − ), and universal behaviour for exotic reactions ( p p → p p , K − p → pK − ) with d σ /d u | u =0 ∼ s −10 excluding the existence of a “glory” mechanism in p p elastic backward scattering in our energy range.
No description provided.
Data collected in the experiment R704 at the CERN ISR are used to study the annihilation process p p → π 0 π 0 at several centre-of-mass energies between 2.97 and 3.56 GeV. A total sample of 7359 events has been identified, from which cross sections and angular distributions in the interval 0 < | cos θ ∗ | < 0.5 have been measured.
In an experiment performed at the CERN Intersecting Storage Rings as a part of an energy scan to detect the η c formation in p p annihilation, we studied the reaction p p →φφ→ K + K − K + K − . The total cross section has been determined to be 25.0± 7.4±3.8 nb.
The cross sections for single vector boson production in the We ν and Zee channels are measured from the data collected by the ALEPH detector at LEP for centre-of-mass energies between 183 and 209 GeV. These data correspond to a total integratedluminosity of 683 pb −1 . Single-W production is studied in both hadronic and leptonic decay channels. Hadronic and dimuon decays are used for single-Z production. The measured cross sections agree with the Standard Model predictions.
Measured cross sections for single W production in the leptonic and hadronic decay channels of the W separately and combined.
The measured single Z0 production cross section.
Z0 --> MU+ MU- cross section averaged over all c.m. energies.
The W + W- production cross section is measured from a data sample corresponding to a total integrated luminosity of 683 pb-1, collected by the ALEPH experiment at LEP at centre-of-mass energies from
The measured cross section for the E NU E NU final state. The DSYS error is the typical systematic error.
The measured cross section for the E NU MU NU final state. The DSYS error is the typical systematic error.
The measured cross section for the E NU TAU NU final state. The DSYS error is the typical systematic error.
The inclusive production of D$^{*\pm}$ mesons in two-photon collisions is measured with the ALEPH detector at $\epem$ centre-of-mass energies from 183$\unit{GeV}$ to 209$\unit{GeV}$. A total of $360 \pm 27$ D$^{*\pm}$ meson events were observed from an integrated luminosity of 699\unit{pb^{-1}}$. Contributions from direct and single-resolved rocesses are separated using the ratio of the transverse momentum $p_{\rm t}^{\rm D^{*\pm}}$ of the D$^{*\pm}$ to the visible invariant mass $W_{\mathrm{vis}}$ of the event. Differential cross sections of D$^{*\pm}$ production as functions of $p_{\rm t}^{\rm D^{*\pm}}$ and the pseudorapidity $|\eta^{\rm D^{*\pm}}| $ are measured in the range $ 2\unit{GeV}/c < p_{\rm t}^{\rm D^{*\pm}} < 12\unit{GeV}/c $ and $ |\eta^{\rm D^{*\pm}}| < 1.5 $. They are compared to next-to-leading order (NLO)perturbative QCD calculations. The extrapolation of the integrated visible D$^{*\pm}$ cross section to the total charm cross section, based on the Pythia Monte Carlo program, yields $ \sigma (\epem \to \epem \ccbar)_ {=197\unit{GeV}} = 731 \pm 74_{\mathrm{stat}} \pm 47_{\mathrm{syst}} \pm 157_{\mathrm{extr}} \unit{pb} $.
Total extrapolated charm production cross section. The second DSYS error isdue to the uncertainty in the extrapolation.
Visible cross section with the acceptance range.
Visible cross section within the acceptance ranges for the three decay modes observed.
Yields for J/psi production in Cu+Cu collisions at sqrt (s_NN)= 200 GeV have been measured by the PHENIX experiment over the rapidity range |y| < 2.2 at transverse momenta from 0 to beyond 5 GeV/c. The invariant yield is obtained as a function of rapidity, transverse momentum and collision centrality, and compared with results in p+p and Au+Au collisions at the same energy. The Cu+Cu data provide greatly improved precision over existing Au+Au data for J/psi production in collisions with small to intermediate numbers of participants, providing a key constraint that is needed for disentangling cold and hot nuclear matter effects.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 0-20 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 20-40 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi-->e+e- invariant yield in Cu+Cu collisions as a function of p_T at mid-rapidity for the 40-60 centrality range. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
Heavy quarkonia are observed to be suppressed in relativistic heavy ion collisions relative to their production in p+p collisions scaled by the number of binary collisions. In order to determine if this suppression is related to color screening of these states in the produced medium, one needs to account for other nuclear modifications including those in cold nuclear matter. In this paper, we present new measurements from the PHENIX 2007 data set of J/psi yields at forward rapidity (1.2<|y|<2.2) in Au+Au collisions at sqrt(s_NN)=200 GeV. The data confirm the earlier finding that the suppression of J/psi at forward rapidity is stronger than at midrapidity, while also extending the measurement to finer bins in collision centrality and higher transverse momentum (pT). We compare the experimental data to the most recent theoretical calculations that incorporate a variety of physics mechanisms including gluon saturation, gluon shadowing, initial-state parton energy loss, cold nuclear matter breakup, color screening, and charm recombination. We find J/psi suppression beyond cold-nuclear-matter effects. However, the current level of disagreement between models and d+Au data precludes using these models to quantify the hot-nuclear-matter suppression.
J/psi invariant yield in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_{T}$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi nuclear modification $R_{AA}$ in Au+Au collisions as a function of $N_{part}$ at forward rapidity ($p_T$ integrated). The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.
J/psi invariant yield in Au+Au collisions as a function of transverse momentum for the 0-20% centrality class at forward rapidity. The statistical and systematic uncertainties vary point-to-point and are listed for each measured value. An additional global systematic uncertainty is provided in each column heading, which applies to all data points per column.