None
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
Axis error includes +- 0.0/0.0 contribution (?////).
We present a study of leading protons and antiprotons inp-nucleus and\(\bar p\)-nucleus on Be, Cu, Ag, W, and U targets. The experiment was performed at the CERN-SPS at a beam energy of 120 GeV. For all targets a suppression of secondary antiprotons with respect to protons is observed. The difference between the\(\bar p\) andp spectra increases with decreasing χ-values and the effect is stronger for heavier nuclei. The features of the data are qualitatively consistent with multiple-collisions modesls. The data are analysed in terms of a dual parton model which gives a satisfactory description of leadingp and\(\bar p\) spectra.
No description provided.
The charmonium χ states are observed in both π− and p Be interactions near 200 GeV/c via their radiative decay into J/ψ. The χ(3510) and χ(3555) are produced with roughly equal cross sections in π− collisions while the χ(3555) dominates in p collisions. Simple gluon fusion can account for χ production with incident protons but additional mechanisms are needed for incident π−.
No description provided.
We have measured the total cross sections of Ω− and Ω¯+ forward (xF>~0) inclusive production in KL0-carbon interactions in the range EK0=80 to 280 GeV to be 3.5±1.4 and 2.4±1.0 μb, respectively. We observe that the xF distributions for both of these states are increasing from xF=0 to xF≈0.6. The p⊥2 distributions are described as an exponential function in p⊥ with an average p⊥2 of 0.540 GeV2/c2.
No description provided.
Large-angle cross sections for γd→π0d are systematically measured in the photon energy range between 500 and 1000 MeV. A good fit is obtained by use of a Glauber-model calculation which includes the dibaryon resonances F33(2.26) and G41(2.51), but the fit has an unusual nature in the role of resonance and nonresonance contributions.
Liquid hydrogen target for final calibration.
LIQUID DEUTERIUM TARGET.
We report a measurement of the reaction γγ→K+K−π+π− in both tagged and untagged events at PEP. The cross section rises with invariant γγ mass to about 15 nb at 2 GeV and falls slowly at higher masses. We find clear evidence for the processes γγ→φπ+π− and γγ→K*0(892)Kπ. Upper limits (95% C.L.) of 1.5 and 5.7 nb in the mass range from 1.7 to 3.7 GeV are obtained for φρ0 and K*0K¯*0 production, respectively.
No description provided.
No description provided.
Untagged sample, (non-resonant).
The ρ0-meson spin alignment is studied in p¯p interactions at 22.4 and 12 GeV/c and in the reaction p¯p→2π++2π−+neutrals at 5.7 GeV/c. An essential ρ0-meson spin alignment is observed. The values of the ρ00T element of the ρ0-meson spin-density matrix in the transversity frame are 0.56 ± 0.07, 0.53 ± 0.05, and 0.54 ± 0.04 for the above-mentioned interactions, respectively. An increase of ρ00T with ρ0 transverse momentum is obtained.
No description provided.
No description provided.
No description provided.
We have measured the differential cross section for p¯p and pp elastic scattering at s=53 GeV in the interval 0.5<|t|<4.0 (GeV/c)2 at the CERN intersecting storage rings using the split-field magnet detector. The shape of the differential cross section differs significantly between p¯p and pp scattering in the region 1.1<|t|<1.5 (GeV/c)2, with p¯p data showing a less pronounced dip structure than pp data.
No description provided.
No description provided.
Measurements of the spin observables ANN(90∘) and AN0(90∘) for the reaction pp→dπ+ between 500 and 800 MeV are presented and compared with previous measurements and with predictions from theories and a partial-wave analysis. These are the first available measurements of ANN above 590 MeV.
ANALYSING POWER IS POL.POL(NAME=AN0).
The charged-particle multiplicities of hadronic events deriving from produced bottom or charm quarks have been measured in the Mark II detector at PEP in e+e− annihilation at 29GeV. For events containing one semileptonic and one hadronic weak decay, we find multiplicities of 15.2±0.5±0.7 for bottom and 13.0±0.5±0.8 for charm. The corresponding multiplicities of charged particles accompanying the pair of heavy hadrons are 5.2±0.5±0.9 for bottom, and 8.1±0.5±0.9 for charm.
.
.
.