Date

Search for new phenomena in photon+jet events collected in proton--proton collisions at sqrt(s) = 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abajyan, Tatevik ; Abbott, Brad ; et al.
Phys.Lett.B 728 (2014) 562-578, 2014.
Inspire Record 1253852 DOI 10.17182/hepdata.62307

This Letter describes a model-independent search for the production of new resonances in photon + jet events using 20 inverse fb of proton--proton LHC data recorded with the ATLAS detector at a centre-of-mass energy of sqrt(s) = 8 TeV. The photon + jet mass distribution is compared to a background model fit from data; no significant deviation from the background-only hypothesis is found. Limits are set at 95% credibility level on generic Gaussian-shaped signals and two benchmark phenomena beyond the Standard Model: non-thermal quantum black holes and excited quarks. Non-thermal quantum black holes are excluded below masses of 4.6 TeV and excited quarks are excluded below masses of 3.5 TeV.

0 data tables match query

Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in $pp$ collisions at $\sqrt{s}$=8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 738 (2014) 234-253, 2014.
Inspire Record 1310835 DOI 10.17182/hepdata.78567

Measurements of fiducial and differential cross sections of Higgs boson production in the ${H \rightarrow ZZ ^{*}\rightarrow 4\ell}$ decay channel are presented. The cross sections are determined within a fiducial phase space and corrected for detection efficiency and resolution effects. They are based on 20.3 fb$^{-1}$ of $pp$ collision data, produced at $\sqrt{s}$=8 TeV centre-of-mass energy at the LHC and recorded by the ATLAS detector. The differential measurements are performed in bins of transverse momentum and rapidity of the four-lepton system, the invariant mass of the subleading lepton pair and the decay angle of the leading lepton pair with respect to the beam line in the four-lepton rest frame, as well as the number of jets and the transverse momentum of the leading jet. The measured cross sections are compared to selected theoretical calculations of the Standard Model expectations. No significant deviation from any of the tested predictions is found.

0 data tables match query

Inclusive Charm Cross-Sections in 800-GeV/c p p Interactions

The LEBC-MPS collaboration Ammar, R. ; Banerjee, S. ; Baland, J.F. ; et al.
Phys.Lett.B 183 (1987) 110, 1987.
Inspire Record 233423 DOI 10.17182/hepdata.42573

We report a measurement of the inclusive D/D̄ production cross section in 800 GeV/ c proton-proton interactions. The experiment used the high resolution bubble chamber LEBC exposed to an 800 GeV/ c proton beam at the Fermilab MPS. We obtain σ( D/ D ̄ )=59 −15 +22 μ b (statistical errors), having analysed 25% of the total data sample. Comparison with 400 GeV/ c pp dat a obtained with LEBC at CERN shows a D/D̄ cross section increase by a factor of 1.7 −0.5 +0.7 . This is in good agreement with fusion model calculations.

0 data tables match query

Two-particle Bose-Einstein correlations in $pp$ collisions at $\mathbf {\sqrt{s} =}$ 0.9 and 7 TeV measured with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 466, 2015.
Inspire Record 1346844 DOI 10.17182/hepdata.70016

The paper presents studies of Bose-Einstein Correlations (BEC) for pairs of like-sign charged particles measured in the kinematic range $p_{\rm T}>$ 100 MeV and $|\eta|<$ 2.5 in proton--proton collisions at centre-of-mass energies of 0.9 and 7 TeV with the ATLAS detector at the CERN Large Hadron Collider. The integrated luminosities are approximately 7 $\mu$b$^{-1}$, 190 $\mu$b$^{-1}$ and 12.4 nb$^{-1}$ for 0.9 TeV, 7 TeV minimum-bias and 7 TeV high-multiplicity data samples, respectively. The multiplicity dependence of the BEC parameters characterizing the correlation strength and the correlation source size are investigated for charged-particle multiplicities of up to 240. A saturation effect in the multiplicity dependence of the correlation source size is observed using the high-multiplicity 7 TeV data sample. The dependence of the BEC parameters on the average transverse momentum of the particle pair is also investigated.

1 data table match query

The $R_{2}(Q)$ correlation function measured at $7\ TeV$ using unlike-charge particle reference sample for different $k_{T}$ intervals within multiplicity interval $n_{ch} = 10-24$. The error bars represents only the statistical uncertainties.


Version 2
Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at $\sqrt{s}=8$ TeV with ATLAS

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 112, 2014.
Inspire Record 1306615 DOI 10.17182/hepdata.65179

Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of $\sqrt{s}=8$ TeV. The analysis is performed in the $H \rightarrow \gamma\gamma$ decay channel using 20.3 fb$^{-1}$ of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The $pp\rightarrow H \rightarrow \gamma\gamma$ fiducial cross section is measured to be $43.2 \pm 9.4 (stat) {}^{+3.2}_{-2.9} (syst) \pm 1.2 (lumi)$ fb for a Higgs boson of mass 125.4 GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations.

2 data tables match query

Measured differential cross section with associated uncertainties as a function of cosine of the decay angle in the Collins-Soper frame in bins of diphoton transverse momentum. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.

Measured differential cross section with associated uncertainties as a function of cosine of the decay angle in the Collins-Soper frame in bins of diphoton transverse momentum. Each systematic uncertainty sources is fully uncorrelated with the other sources and fully correlated across bins, except for the background modelling systematics for which an uncorrelated treatment across bins is more appropriate.


Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 09 (2014) 015, 2014.
Inspire Record 1299143 DOI 10.17182/hepdata.64630

The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of $20.1 \rm{fb}^{-1}$ of proton-proton collision data at $\sqrt{s}=8$ TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ or $\tilde{t}\rightarrow b\tilde{\chi}_{1}^{\pm} \rightarrow b W^{\left(\ast\right)} \tilde{\chi}_{1}^{0}$, where $\tilde{\chi}_{1}^{0}$ ($\tilde{\chi}_{1}^{\pm}$) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$. For a branching fraction of 100%, top squark masses in the range 270-645 GeV are excluded for $\tilde{\chi}_{1}^{0}$ masses below 30 GeV. For a branching fraction of 50% to either $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$ or $\tilde{t}\rightarrow b\tilde{\chi}_{1}^{\pm}$, and assuming the $\tilde{\chi}_{1}^{\pm}$ mass to be twice the $\tilde{\chi}_{1}^{0}$ mass, top squark masses in the range 250-550 GeV are excluded for $\tilde{\chi}_{1}^{0}$ masses below 60 GeV.

1 data table match query

Signal region (SR) combination providing the lowest expected CLs in the ( M(STOP), M(NEUTRALINO) ) mass plane for the stop pair production scenario.


Measurement of differential production cross-sections for a $Z$ boson in association with $b$-jets in 7 TeV proton-proton collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 10 (2014) 141, 2014.
Inspire Record 1306294 DOI 10.17182/hepdata.65389

Measurements of differential production cross-sections of a $Z$ boson in association with $b$-jets in $pp$ collisions at $\sqrt{s}=7$ TeV are reported. The data analysed correspond to an integrated luminosity of 4.6 fb$^{-1}$ recorded with the ATLAS detector at the Large Hadron Collider. Particle-level cross-sections are determined for events with a $Z$ boson decaying into an electron or muon pair, and containing $b$-jets. For events with at least one $b$-jet, the cross-section is presented as a function of the $Z$ boson transverse momentum and rapidity, together with the inclusive $b$-jet cross-section as a function of $b$-jet transverse momentum, rapidity and angular separations between the $b$-jet and the $Z$ boson. For events with at least two $b$-jets, the cross-section is determined as a function of the invariant mass and angular separation of the two highest transverse momentum $b$-jets, and as a function of the $Z$ boson transverse momentum and rapidity. Results are compared to leading-order and next-to-leading-order perturbative QCD calculations.

1 data table match query

Breakdown of systematic uncertainties (in %) for the cross-section $\sigma(Zbb)$ as a function of $\Delta R(b,b)$.


Version 2
Comprehensive measurements of $t$-channel single top-quark production cross sections at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 90 (2014) 112006, 2014.
Inspire Record 1303905 DOI 10.17182/hepdata.64385

This article presents measurements of the $t$-channel single top-quark ($t$) and top-antiquark ($\bar{t}$) total production cross sections $\sigma(tq)$ and $\sigma(\bar{t}q)$, their ratio $R_{t}=\sigma(tq)/\sigma(\bar{t}q)$, and a measurement of the inclusive production cross section $\sigma(tq + \bar{t}q)$ in proton--proton collisions at $\sqrt{s} = 7$ TeV at the LHC. Differential cross sections for the $tq$ and $\bar{t}q$ processes are measured as a function of the transverse momentum and the absolute value of the rapidity of $t$ and $\bar{t}$, respectively. The analyzed data set was recorded with the ATLAS detector and corresponds to an integrated luminosity of 4.59 fb$^{-1}$. Selected events contain one charged lepton, large missing transverse momentum, and two or three jets. The cross sections are measured by performing a binned maximum-likelihood fit to the output distributions of neural networks. The resulting measurements are $\sigma(tq)= 46\pm 6\; \mathrm{pb}$, $\sigma(\bar{t}q)= 23 \pm 4\; \mathrm{pb}$, $R_{t}=2.04\pm 0.18$, and $\sigma(tq + \bar{t}q)= 68 \pm 8\; \mathrm{pb}$, consistent with the Standard Model expectation. The uncertainty on the measured cross sections is dominated by systematic uncertainties, while the uncertainty on $R_{t}$ is mainly statistical. Using the ratio of $\sigma(tq + \bar{t}q)$ to its theoretical prediction, and assuming that the top-quark-related CKM matrix elements obey the relation $|V_{tb}|\gg |V_{ts}|, |V_{td}|$, we determine $|V_{tb}|=1.02 \pm 0.07$.

1 data table match query

Detailed list of the contribution of each source of uncertainty to the total relative uncertainty on the measured $\dfrac{\mathrm{d}\sigma}{\mathrm{d}|y(t)|}$ distribution given in percent for each bin. The list includes only those uncertainties that contribute with more than $1\%$. The following uncertainties contribute to the total uncertainty with less than $1\%$ to each bin content$:$ JES detector, JES statistical, JES physics modeling, JES mixed detector and modeling, JES close-by jets, JES pileup, JES flavor composition, JES flavor response, jet-vertex fraction, $b/\bar{b}$ acceptance, $E_{\mathrm{T}}^{\mathrm{miss}}$ modeling, $W+$ jets shape variation, $t \bar{t}$ generator, $t \bar{t}$ ISR/FSR, and unfolding. In cases when the uncertainty is report to be "$<1\%$" in the table of the paper the uncertainty is approximated by a value of $0.5\%$.


Search for supersymmetry at sqrt(s)=8 TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 06 (2014) 035, 2014.
Inspire Record 1289225 DOI 10.17182/hepdata.63682

A search for strongly produced supersymmetric particles is conducted using signatures involving multiple energetic jets and either two isolated leptons ($e$ or $\mu$) with the same electric charge, or at least three isolated leptons. The search also utilises jets originating from b-quarks, missing transverse momentum and other observables to extend its sensitivity. The analysis uses a data sample corresponding to a total integrated luminosity of 20.3 fb$^{-1}$ of $\sqrt{s} =$ 8 TeV proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider in 2012. No deviation from the Standard Model expectation is observed. New or significantly improved exclusion limits are set on a wide variety of supersymmetric models in which the lightest squark can be of the first, second or third generations, and in which R-parity can be conserved or violated.

1 data table match query

The acceptances (in percent, %) are calculated for all simplified extra dimension model (see Fig. 8d in the paper). For each model, the values are given for the five signal regions and their combination.


Search for supersymmetry in events with four or more leptons in $\sqrt{s}$ = 8 TeV pp collisions with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.D 90 (2014) 052001, 2014.
Inspire Record 1297226 DOI 10.17182/hepdata.63284

Results from a search for supersymmetry in events with four or more leptons including electrons, muons and taus are presented. The analysis uses a data sample corresponding to 20.3 $fb^{-1}$ of proton--proton collisions delivered by the Large Hadron Collider at $\sqrt{s}$ = 8 TeV and recorded by the ATLAS detector. Signal regions are designed to target supersymmetric scenarios that can be either enriched in or depleted of events involving the production of a $Z$ boson. No significant deviations are observed in data from Standard Model predictions and results are used to set upper limits on the event yields from processes beyond the Standard Model. Exclusion limits at the 95% confidence level on the masses of relevant supersymmetric particles are obtained. In R-parity-violating simplified models with decays of the lightest supersymmetric particle to electrons and muons, limits of 1350 GeV and 750 GeV are placed on gluino and chargino masses, respectively. In R-parity-conserving simplified models with heavy neutralinos decaying to a massless lightest supersymmetric particle, heavy neutralino masses up to 620 GeV are excluded. Limits are also placed on other supersymmetric scenarios.

1 data table match query

The effective mass distribution in SR2Z.