Measurements of the double-differential $\pi^{\pm}$ production cross-section in the range of momentum $0.5 \GeVc \leq p \le 8.0 \GeVc$ and angle $0.025 \rad \leq \theta \le 0.25 \rad$ in interactions of charged pions on beryllium, carbon, aluminium, copper, tin, tantalum and lead are presented. These data represent the first experimental campaign to systematically measure forward pion hadroproduction. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. Incident particles, impinging on a 5% nuclear interaction length target, were identified by an elaborate system of beam detectors. The tracking and identification of the produced particles was performed using the forward spectrometer of the HARP detector. Results are obtained for the double-differential cross-sections $ {{\mathrm{d}^2 \sigma}}/{{\mathrm{d}p\mathrm{d}\Omega}} $ mainly at four incident pion beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). The measurements are compared with the GEANT4 and MARS Monte Carlo simulation
Double differential PI+ and PI- production cross section in the laboratory system for PI- BE interactions at 3, 5, 8 and 12 GeV for the angular range 0.05 to 0.10 radians.
Double differential PI+ and PI- production cross section in the laboratory system for PI- BE interactions at 3, 5, 8 and 12 GeV for the angular range 0.10 to 0.15 radians.
Double differential PI+ and PI- production cross section in the laboratory system for PI- BE interactions at 3, 5, 8 and 12 GeV for the angular range 0.15 to 0.20 radians.
First measurements of the differential cross sections for the inclusive production of a photon in association with a heavy quark (c, b) jet are presented, covering photon transverse momenta 30-150 GeV, photon rapidities | y_gamma| < 1.0, jet rapidities |y_jet| < 0.8, and jet transverse momenta pT_jet > 15 GeV. The results are based on an integrated luminosity of 1 fb^-1 in ppbar collisions at sqrt(s)=1.96 TeV recorded with the D0 detector at the Fermilab Tevatron Collider. The results are compared with next-to-leading order perturbative QCD predictions.
Differential cross section for (GAMMA BJET X) production in the region YRAP(GAMMA)*YRAP(JET) > 0.
Differential cross section for (GAMMA BJET X) production in the region YRAP(GAMMA)*YRAP(JET) < 0.
Differential cross section for (GAMMA CJET X) production in the region YRAP(GAMMA)*YRAP(JET) > 0.
We report the measurement of charged $D^*$ mesons in inclusive jets produced in proton-proton collisions at a center of mass energy $\sqrt{s}$ = 200 GeV with the STAR experiment at RHIC. For $D^{*}$ mesons with fractional momenta $0.2 < z < 0.5$ in inclusive jets with 11.5 GeV mean transverse energy, the production rate is found to be $N(D^{*+}+D^{*-})/N(\mathrm{jet}) = 0.015 \pm 0.008 (\mathrm{stat}) \pm 0.007 (\mathrm{sys})$. This rate is consistent with perturbative QCD evaluation of gluon splitting into a pair of charm quarks and subsequent hadronization.
D*+-/jet azimuthal correlations. Delta Phi represents the difference in azimuthal angle between D*+- (of 2<Pt<10 GeV/c) and the jet's (of 8<Pt<20 GeV/c) axis.
Production rate of D*+- mesons with fractional longitudinal momenta 0.2<z<0.5 (z = Pl(D*+-)/Ejet, Pl is the momentum projection on the jet axis and Ejet is the total jet energy) in inclusive jets of 11.5 Gev mean transverse energy.
A study of the angular distributions of leptons from decays of J/psi's produced in p-C and p-W collisions at sqrt{s}=41.6 GeV has been performed in the Feynman-x region -0.34 < x_F < 0.14 and for transverse momentum up to 5.4 GeV/c. The data were collected by the HERA-B experiment at the HERA proton ring of the DESY laboratory. The results, based on a clean selection of 2.3 x 10^5 J/psi's reconstructed in both the e^+ e^- and mu^+ mu^- decay channels, indicate that J/psi's are produced with longitudinal polarization. The magnitude of the effect is maximal at low p_T. For p_T >1 GeV/c a significant dependence on the reference frame is found: the polar anisotropy is more pronounced in the Collins-Soper frame and almost vanishes in the helicity frame, where, instead, a significant azimuthal anisotropy arises.
Output parameters obtained by fitting the distributions.
Values of the parameters Lambda_theta, Lambda_phi et Lambda_theta_phi measured in the Collins-Soper frame as functions of the average reconstructed p_T for combined carbon and tungsten data.
Values of the parameters Lambda_theta, Lambda_phi et Lambda_theta_phi measured in the Collins-Soper frame as functions of the average reconstructed x_F for combined carbon and tungsten data.
We present a measurement of the $\ttbar$ production cross section in $\ppbar$ collisions at $\sqrt{s}=1.96$ TeV using events containing a high transverse momentum electron or muon, three or more jets, and missing transverse energy. Events consistent with $\ttbar$ decay are found by identifying jets containing candidate heavy-flavor semileptonic decays to muons. The measurement uses a CDF Run II data sample corresponding to $2 \mathrm{fb^{-1}}$ of integrated luminosity. Based on 248 candidate events with three or more jets and an expected background of $79.5\pm5.3$ events, we measure a production cross section of $9.1\pm 1.6 \mathrm{pb}$.
Measured cross section assuming a top quark mass of 175 GeV. The second systematic error is the uncertainty on the luminosity.
The production of D+- and D0 mesons has been measured with the ZEUS detector at HERA using an integrated luminosity of 133.6 pb-1. The measurements cover the kinematic range 5 < Q^2 < 1000 GeV^2, 0.02 < y < 0.7, 1.5 < p_T^D < 15 GeV and eta^D < 1.6. Combinatorial background to the D meson signals is reduced by using the ZEUS microvertex detector to reconstruct displaced secondary vertices. Production cross sections are compared with the predictions of next-to-leading-order QCD which is found to describe the data well. Measurements are extrapolated to the full kinematic phase space in order to obtain the open-charm contribution, F2^ccbar, to the proton structure function, F2.
Production cross section for (D+ + D-) mesons.
Production cross section for (D0 + DBAR0) mesons not originating from D*+- decays.
Measured D+- cross section as a function of Q**2.
The longitudinal polarisation transfer from muons to lambda and anti-lambda hyperons, D_LL, has been studied in deep inelastic scattering off an unpolarised isoscalar target at the COMPASS experiment at CERN. The spin transfers to lambda and anti-lambda produced in the current fragmentation region exhibit different behaviours as a function of x and xF . The measured x and xF dependences of D^lambda_LL are compatible with zero, while D^anti-lambda_LL tends to increase with xF, reaching values of 0.4 - 0.5. The resulting average values are D^lambda_LL = -0.012 +- 0.047 +- 0.024 and D^anti-lambda_LL = 0.249 +- 0.056 +- 0.049. These results are discussed in the frame of recent model calculations.
The weighted average of the spin transfers for the 2003 and 2004 data.
The XL dependence of the spin transfer from muons to the LAMBDA hyperon.
The X dependence of the spin transfer from muons to the LAMBDA hyperon.
Inclusive doubly differential cross sections d^2\sigma_{pA}/dx_Fdp_T^2 as a function of Feynman-x (x_F) and transverse momentum (p_T) for the production of K^0_s, Lambda^0 and anti-Lambda^0 in proton-nucleus interactions at 920 GeV are presented. The measurements were performed by HERA-B in the negative x_F range (-0.12<x_F<0.0) and for transverse momenta up to p_T= 1.6 GeV/c. Results for three target materials: carbon, titanium and tungsten are given. The ratios of production cross sections are presented and discussed. The Cronin effect is clearly observed for all three V^0 species. The atomic number dependence is parameterized as \sigma_{pA} = \sigma_{pN} \cdot A^\alpha where \sigma_{pN} is the proton-nucleon cross section. The measured values of \alpha are all near one. The results are compared with EPOS 1.67 and PYTHIA 6.3. EPOS reproduces the data to within \approx 20% except at very low transverse momentum.
Visible cross sections for K0S production in acceptance of the measurement.
Visible cross sections for K0S production in acceptance of the measurement.
Visible cross sections for K0S production in acceptance of the measurement.
A measurement of the inclusive ep scattering cross section is presented in the region of low momentum transfers, 0.2 GeV^2 < Q^2 < 12 GeV^2, and low Bjorken x, 5x10^-6 < x < 0.02. The result is based on two data sets collected in dedicated runs by the H1 Collaboration at HERA at beam energies of 27.6 GeV and 920 GeV for positrons and protons, respectively. A combination with data previously published by H1 leads to a cross section measurement of a few percent accuracy. A kinematic reconstruction method exploiting radiative ep events extends the measurement to lower Q^2 and larger x. The data are compared with theoretical models which apply to the transition region from photoproduction to deep inelastic scattering.
Reduced cross section as measured in the SVX data sample for Q**2 = 0.20 GeV**2. Additional 3 PCT luminosity uncertainty not included in the total error.
Reduced cross section as measured in the SVX data sample for Q**2 = 0.25 GeV**2. Additional 3 PCT luminosity uncertainty not included in the total error.
Reduced cross section as measured in the SVX data sample for Q**2 = 0.35 GeV**2. Additional 3 PCT luminosity uncertainty not included in the total error.
Events with high energy isolated electrons, muons or tau leptons and missing transverse momentum are studied using the full e^\pm p data sample collected by the H1 experiment at HERA, corresponding to an integrated luminosity of 474 pb^{-1}. Within the Standard Model, events with isolated leptons and missing transverse momentum mainly originate from the production of single W bosons. The total single W boson production cross section is measured as 1.14 \pm 0.25 (stat.) \pm 0.14 (sys.) pb, in agreement with the Standard Model expectation. The data are also used to establish limits on the WW\gamma gauge couplings and for a measurement of the W boson polarisation.
Total single W boson production cross section.
Differential single W boson production cross section.