The importance of two-photon exchange in elastic electron-proton scattering was investigated by measuring the ratio of positron-proton to electron-proton scattering. Four-momentum transfers as large as 0.756 (BeV/c)2 (19.5 F−2) were used. The data indicate that two-photon effects are (4.0±1.5)% larger than those predicted by the radiative corrections at the highest momentum transfers attained in these experiments. The two-photon corrections predicted using a static charge distribution fit the data well at lower momentum transfers and forward angles, but appear to be small at higher momentum transfers and backward angles.
Data recalculated from the data of Yount and Pine.
Data recalculated from the data of Yount and Pine. RUN_1 and RUN_2 of the Yount and Pine experiment were separated by large time interval.
Data recalculated from the data of Yount and Pine.
In an exposure of the Brookhaven National Laboratory 20-in. hydrogen bubble chamber to a separated π+ beam at π+ momenta of 2.35 BeV/c (center-of-mass energy E*=2.30 BeV), 2.62 BeV/c (E*=2.41 BeV), and 2.90 BeV/c (E*=2.52 BeV), we have observed production of the ω0, ρ0, and η0 mesons. The production of the ω0, ρ0, and η0 is often accompanied by simultaneous production of the N*++. The momentum transfer in ω0 and ρ0 production is characteristic of peripheral collisions and suggests a single-particle exchange for the production mechanism. The decay distributions for the ω0, ρ0, and the ρ+ demonstrate the importance of modifying the single-particle-exchange model to include absorptive effects. An upper limit on the two-π decay of the ω0 is set at 2%. The width of the η0 is found to be less than 10 MeV. Elastic-scattering distributions are presented.
No description provided.
Three narrow peaks with masses 1632 ± 15, 1700 ± 15 and 1748 ± 15, reffered to as R 1 , R 2 and R 3 , have been observed in missing-mass spectrometer runs at incident pion momenta of 7 and 12 GeV/ c and a mass-resolution of ± 15 MeV. One-peak hypothesis gives a confidence level P ( χ 2 )=0.8%; the three-peak one gives P ( χ 2 )=60%. Statistical significance for R 1 , R 2 and R 3 is, respectively, 3.8, 6.6 and 6.1 standard deviations from the highest background line. R 1 and R 2 decay into one and three, while the R 3 decays mainly into three charged particles. Their physical widths are compatible with zero, with upper limits of the order of Γ ⩽30 MeV.
No description provided.
None
No description provided.
The polarization parameter in proton-proton scattering has been measured at incident proton kinetic energies of 1.7, 2.85, 3.5, 4.0, 5.05, and 6.15 BeV and for four-momentum transfer squared between 0.1 and 1.0 (BeV/c)2. The experiment was done with an unpolarized proton beam from the Bevatron striking a polarized proton target. Both final-state protons were detected in coincidence and the asymmetry in counting rate for target protons polarized parallel and antiparallel to the scattering normal was measured. The maximum polarization was observed to decrease from 0.4 at 1.7 BeV to 0.2 at 6.1 BeV. The maximum of the polarization at all energies studied occurs at a four-momentum transfer squared of 0.3 to 0.4 (BeV/c)2.
'1'.
'2'.
'3'.
Cross sections for the reaction γ+p→π0+p for incident gamma-ray energies of 2.0 to 5.0 GeV and for baryon four-momentum transfers squared of 0.5 to 4.0 (GeV/c)2 are presented. The results are compared with theoretical predictions based on Reggeized vector-meson exchange.
'1'.
'1'.
'1'.
None
'1'. '2'. '3'.
Measurements of the differential cross section for the process γ+p→π0+p have been made at eight pion center-of-mass angles in the range 51-135° and for incident photon energies from approximately 600-1200 MeV. The bremsstrahlung photon beam used was obtained from the California Institute of Technology electron synchrotron. Both the recoil proton and one γ ray from the decay of the π0 were detected. The incident photon energy was determined by measuring the laboratory angle and time of flight of the recoil proton. The angular distributions obtained indicate that the third pion-nucleon resonance is predominantly a D(52) resonance excited by a magnetic quadrupole transition. It can also be concluded that any contribution to the π0 photoproduction cross section from a virtual vector-meson exchange process is probably negligible in the region of the second and third pion-nucleon resonances.
No description provided.
No description provided.
No description provided.
Cross sections for the photoproduction of neutral pions have been measured at the 1.1-GeV Frascati electron synchrotron for bombarding photon energies k between 400 and 800 MeV and for π0 c.m. angles of θπ*=90∘, 120∘, and 135∘. The main feature of the experiment is good resolution in incident photon energy. The results are in good agreement with the existing theories in the energy range of 450 to 550 MeV. The cross sections exhibit a smooth behavior as a function of energy for k=400−600 MeV. No immediate evidence is found of a contribution of the P11 resonance. An anomaly at the limit of statistical significance appears for k≃700−740 MeV, indicating a possible structure of the so-called second resonance. We attempt to interpret the observed anomaly as a reflection of the sharp opening of the η production channel (η cusp effect).
No description provided.
We have performed an experiment to study the reaction π−+p→η+n near threshold, preliminary to a forthcoming measurement of charge asymmetry in η-meson decay. The η was identified by the velocity of the associated neutron. We detected neutrons produced in the forward hemisphere in the center-of-mass system corresponding to the most energetic neutrons in the laboratory. Data were taken at π− momenta between 670 and 805 MeVc. The four neutron detectors made it possible to detect neutrons at angles of 0° to 21° from the incident pion beam. We present backward differential cross sections for both pion charge exchange and η production calculated from the data. We looked for η′ at pion momenta of 1.5 BeVc and observed none. We obtained σ(π−p→nη′)≤60 μb.
No description provided.
No description provided.
No description provided.