Measurements are presented of electroweak boson production using data from $pp$ collisions at a centre-of-mass energy of $\sqrt{s} = 8\mathrm{\,Te\kern -0.1em V}$. The analysis is based on an integrated luminosity of $2.0\mathrm{\,fb}^{-1}$ recorded with the LHCb detector. The bosons are identified in the $W\rightarrow\mu\nu$ and $Z\rightarrow\mu^{+}\mu^{-}$ decay channels. The cross-sections are measured for muons in the pseudorapidity range $2.0 < \eta < 4.5$, with transverse momenta $p_{\rm T} > 20{\mathrm{\,Ge\kern -0.1em V\!/}c}$ and, in the case of the $Z$ boson, a dimuon mass within $60 < M_{\mu^{+}\mu^{-}} < 120{\mathrm{\,Ge\kern -0.1em V\!/}c^{2}}$. The results are \begin{align*} \sigma_{W^{+}\rightarrow\mu^{+}\nu} &= 1093.6 \pm 2.1 \pm 7.2 \pm 10.9 \pm 12.7{\rm \,pb} \, , \sigma_{W^{-}\rightarrow\mu^{-}\bar{\nu}} &= \phantom{0}818.4 \pm 1.9 \pm 5.0 \pm \phantom{0}7.0 \pm \phantom{0}9.5{\rm \,pb} \, , \sigma_{Z\rightarrow\mu^{+}\mu^{-}} &= \phantom{00}95.0 \pm 0.3 \pm 0.7 \pm \phantom{0}1.1 \pm \phantom{0}1.1{\rm \,pb} \, , \end{align*} where the first uncertainties are statistical, the second are systematic, the third are due to the knowledge of the LHC beam energy and the fourth are due to the luminosity determination. The evolution of the $W$ and $Z$ boson cross-sections with centre-of-mass energy is studied using previously reported measurements with $1.0\mathrm{\,fb}^{-1}$ of data at $7\mathrm{\,Te\kern -0.1em V}$. Differential distributions are also presented. Results are in good agreement with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics.
Inclusive cross-section for $W^+$ and $W^-$ boson production in bins of muon pseudorapidity. The uncertainties are statistical, systematic, beam and luminosity.
Inclusive cross-section for $Z$ boson production in bins of rapidity. The uncertainties are statistical, systematic, beam and luminosity.
Inclusive cross-section for $Z$ boson production in bins of transverse momentum. The uncertainties are statistical, systematic, beam and luminosity.
A measurement of the production cross-section for $Z$ bosons that decay to muons is presented. The data were recorded by the LHCb detector during $pp$ collisions at a centre-of-mass energy of 7 TeV, and correspond to an integrated luminosity of 1.0 fb$^{-1}$. The cross-section is measured for muons in the pseudorapidity range $2.0 < \eta < 4.5$ with transverse momenta $p_{T} > 20$ GeV/c. The dimuon mass is restricted to $60 < M_{\mu^{+}\mu^{-}} < 120$ GeV/c$^{2}$. The measured cross-section is $$\sigma_{Z\rightarrow\mu^{+}\mu^{-}} = (76.0 \pm 0.3 \pm 0.5 \pm 1.0 \pm 1.3) \, \text{pb}$$ where the uncertainties are due to the sample size, systematic effects, the beam energy and the luminosity. This result is in good agreement with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics. The cross-section is also measured differentially as a function of kinematic variables of the $Z$ boson. Ratios of the production cross-sections of electroweak bosons are presented using updated LHCb measurements of $W$ boson production. A precise test of the Standard Model is provided by the measurement of the ratio $$\frac{\sigma_{W^{+}\rightarrow\mu^{+}\nu_{\mu}} + \sigma_{W^{-}\rightarrow\mu^{-}\bar{\nu}_{\mu}}}{\sigma_{Z\rightarrow\mu^{+}\mu^{-}}} = 20.63\pm0.09\pm0.12\pm0.05,$$ where the uncertainty due to luminosity cancels.
Inclusive cross-section for $Z$ boson production in bins of rapidity. The uncertainties are statistical, systematic, beam and luminosity.
Inclusive cross-section for $Z$ boson production in bins of transverse momentum. The uncertainties are statistical, systematic, beam and luminosity.
Inclusive cross-section for $Z$ boson production in bins of PHI*. The uncertainties are statistical, systematic, beam and luminosity.
H1 and ZEUS have published single-differential cross sections for inclusive D^{*\pm}-meson production in deep-inelastic ep scattering at HERA from their respective final data sets. These cross sections are combined in the common visible phase-space region of photon virtuality Q2 > 5 GeV2, electron inelasticity 0.02 < y < 0.7 and the D^{*\pm} meson's transverse momentum pT (D^*) > 1.5 GeV and pseudorapidity |eta(D^*)| < 1.5. The combination procedure takes into account all correlations, yielding significantly reduced experimental uncertainties. Double-differential cross sections d2s /dQ2dy are combined with earlier D^{*\pm} data, extending the kinematic range down to Q2 > 1.5 GeV2. Perturbative next-to-leadingorder QCD predictions are compared to the results.
The combined differential $D^{*\pm}$-production cross section as a function of $p_T(D^{*})$, with its uncorrelated and correlated uncertainties.
The combined differential $D^{*\pm}$-production cross section as a function of $\eta(D^{*})$, with its uncorrelated and correlated uncertainties.
The combined differential $D^{*\pm}$-production cross section as a function of $z(D^{*})$, with its uncorrelated and correlated uncertainties.
A measurement of the inclusive $W \to \mu\nu$ production cross-section using data from $pp$ collisions at a centre-of-mass energy of $\sqrt{s} = 7 {\rm \, TeV}$ is presented. The analysis is based on an integrated luminosity of about $1.0 {\rm \, fb}^{-1}$ recorded with the LHCb detector. Results are reported for muons with a transverse momentum greater than $20 {\rm \, Ge\kern -0.1em V\!/}c$ and pseudorapidity between 2.0 and 4.5. The $W^{+}$ and $W^{-}$ production cross-sections are measured to be $$\sigma_{W^{+} \to \mu^{+}\nu} = 861.0 \pm 2.0 \pm 11.2 \pm 14.7 {\rm \, pb},$$ $$\sigma_{W^{-} \to \mu^{-}\overline{\nu}} = 675.8 \pm 1.9 \pm 8.8 \pm 11.6 {\rm \, pb},$$ where the first uncertainty is statistical, the second is systematic and the third is due to the luminosity determination. Cross-section ratios and differential distributions as functions of the muon pseudorapidity are also presented. The ratio of $W^{+}$ to $W^{-}$ cross-sections in the same fiducial kinematic region is determined to be $$\frac{\sigma_{W^{+} \to \mu^{+}\nu}}{\sigma_{W^{-} \to \mu^{-}\overline{\nu}}} = 1.274 \pm 0.005 \pm 0.009,$$ where the uncertainties are statistical and systematic, respectively. Results are in good agreement with theoretical predictions at next-to-next-to-leading order in perturbative quantum chromodynamics.
Correction for final state radiation for $W^+ \rightarrow \mu^+\nu$ and $W^- \rightarrow \mu^-\bar{\nu}$ in bins of muon pseudorapidity. No loss due FSR is observed for $W^-$ in the last pseudorapidity bin because of lack of statistics.
Inclusive cross-section for $W^+$ and $W^-$ boson production in bins of muon pseudorapidity. The uncertainties are statistical, systematic and luminosity.
Ratio of $W^+$ to $W^-$ cross-section in bins of muon pseudorapidity. The uncertainties are statistical and systematic.
A measurement of the $Z(\rightarrow\mu^+\mu^-)$+jet production cross-section in $pp$ collisions at a centre-of-mass energy $\sqrt{s} = 7$ TeV is presented. The analysis is based on an integrated luminosity of $1.0\,\text{fb}^{-1}$ recorded by the LHCb experiment. Results are shown with two jet transverse momentum thresholds, 10 and 20 GeV, for both the overall cross-section within the fiducial volume, and for six differential cross-section measurements. The fiducial volume requires that both the jet and the muons from the Z boson decay are produced in the forward direction ($2.0<\eta<4.5$). The results show good agreement with theoretical predictions at the second-order expansion in the coupling of the strong interaction.
The $Z$+jet cross-section at Born level in $pp$ collisions at $\sqrt{s}=7$ TeV. The first uncertainty is statistical, the second is systematic and the third is the uncertainty due to the luminosity determination.
The cross-section ratio $\sigma(Z+\mathrm{jet})/\sigma(Z)$ at Born level in $pp$ collisions at $\sqrt{s}=7$ TeV. The first uncertainty is statistical, the second is systematic and the third is the uncertainty due to the luminosity determination.
Differential cross-section for $Z$+jet in the leading jet $p_T$, for $p_{T}^{\mathrm{jet}} > 10$ GeV/$c$. These results are not corrected for FSR from the final state muons from the $Z$ boson decay.
Decays of $b$ hadrons into final states containing a $D^0$ meson and a muon are used to measure the $b\bar{b}$ production cross-section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC. In the pseudorapidity interval $2 < \eta < 6$ and integrated over all transverse momenta we find that the average cross-section to produce $b$-flavoured or $\bar{b}$-flavoured hadrons is ($75.3 \pm 5.4 \pm 13.0$) microbarns.
The cross section for b-flavoured hadrons (HADRON/B) as a function of pseudorapidity in proton-proton collisions at a centre-of-mass energy of 7 TeV. Cross sections are shown using fragmentation fractions both from LEP and from the Tevatron. See comment above regarding this latter point.
The cross section for b-flavoured hadrons (HADRON/B) over the pseudorapidity range 2.0-6.0 in proton-proton collisions at a centre-of-mass energy of 7 TeV. Cross sections are shown using fragmentation fractions both from LEP and from the Tevatron. See comment above regarding this latter point.
The production of D+- and D0 mesons has been measured with the ZEUS detector at HERA using an integrated luminosity of 133.6 pb-1. The measurements cover the kinematic range 5 < Q^2 < 1000 GeV^2, 0.02 < y < 0.7, 1.5 < p_T^D < 15 GeV and eta^D < 1.6. Combinatorial background to the D meson signals is reduced by using the ZEUS microvertex detector to reconstruct displaced secondary vertices. Production cross sections are compared with the predictions of next-to-leading-order QCD which is found to describe the data well. Measurements are extrapolated to the full kinematic phase space in order to obtain the open-charm contribution, F2^ccbar, to the proton structure function, F2.
Production cross section for (D+ + D-) mesons.
Production cross section for (D0 + DBAR0) mesons not originating from D*+- decays.
Measured D+- cross section as a function of Q**2.
Three-jet production in deep inelastic ep scattering and photoproduction was investigated with the ZEUS detector at HERA using an integrated luminosity of 127 pb-1. Measurements of differential cross sections are presented as functions of angular correlations between the three jets in the final state and the proton-beam direction. These correlations provide a stringent test of perturbative QCD and show sensitivity to the contributions from different colour configurations. Fixed-order perturbative QCD calculations assuming the values of the colour factors C_F, C_A and T_F as derived from a variety of gauge groups were compared to the measurements to study the underlying gauge group symmetry. The measured angular correlations in the deep inelastic ep scattering and photoproduction regimes are consistent with the admixture of colour configurations as predicted by SU(3) and disfavour other symmetry groups, such as SU(N) in the limit of large N.
Integrated 3-jet photoproduction cross section.
Integrated 3-jet cross sections in NC DIS.
Normalized differential 3-jet photoproduction cross section as a function of THETA(H).
Jet cross sections were measured in charged current deep inelastic e+-p scattering at high boson virtualities Q^2 with the ZEUS detector at HERA II using an integrated luminosity of 0.36 fb^-1. Differential cross sections are presented for inclusive-jet production as functions of Q^2, Bjorken x and the jet transverse energy and pseudorapidity. The dijet invariant mass cross section is also presented. Observation of three- and four-jet events in charged-current e+-p processes is reported for the first time. The predictions of next-to-leading-order (NLO) QCD calculations are compared to the measurements. The measured inclusive-jet cross sections are well described in shape and normalization by the NLO predictions. The data have the potential to constrain the u and d valence quark distributions in the proton if included as input to global fits.
Differential polarized inclusive jet cross sections as a function of jet pseudorapidity.
Differential polarized inclusive jet cross sections as a function of jet pseudorapidity.
Differential polarized inclusive jet cross sections as a function of jet transverse energy.
Diffractive photoproduction of dijets was measured with the ZEUS detector at the ep collider HERA using an integrated luminosity of 77.2 pb-1. The measurements were made in the kinematic range Q^2 < 1 GeV^2, 0.20 < y < 0.85 and x_pom < 0.025, where Q^2 is the photon virtuality, y is the inelasticity and x_pom is the fraction of the proton momentum taken by the diffractive exchange. The two jets with the highest transverse energy, E_T^jet, were required to satisfy E_T^jet > 7.5 and 6.5 GeV, respectively, and to lie in the pseudorapidity range -1.5 < eta^jet < 1.5. Differential cross sections were compared to perturbative QCD calculations using available parameterisations of diffractive parton distributions of the proton.
Differential cross section DSIG/DY for diffractive photoproduction of dijets as a function of Y.
Differential cross section DSIG/DM(P=5_6_7) for diffractive photoproduction of dijets as a function of M(P=5_6_7).
Differential cross section DSIG/DX(NAME=POMERON) for diffractive photoproduction of dijets as a function of X(NAME=POMERON).