Measurement of the I=1/2 $K \pi$ $\mathcal{S}$-wave amplitude from Dalitz plot analyses of $\eta_c \to K \bar K \pi$ in two-photon interactions

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 93 (2016) 012005, 2016.
Inspire Record 1403544 DOI 10.17182/hepdata.76968

We study the processes $\gamma \gamma \to K^0_S K^{\pm}\pi^{\mp}$ and $\gamma \gamma \to K^+ K^- \pi^0$ using a data sample of 519~$fb^{-1}$ recorded with the BaBar detector operating at the SLAC PEP-II asymmetric-energy $e^+ e^-$ collider at center-of-mass energies at and near the $\Upsilon(nS)$ ($n = 2,3,4$) resonances. We observe $\eta_c$ decays to both final states and perform Dalitz plot analyses using a model-independent partial wave analysis technique. This allows a model-independent measurement of the mass-dependence of the $I=1/2$ $K \pi$ $\mathcal{S}$-wave amplitude and phase. A comparison between the present measurement and those from previous experiments indicates similar behaviour for the phase up to a mass of 1.5 $GeV/c^2$. In contrast, the amplitudes show very marked differences. The data require the presence of a new $a_0(1950)$ resonance with parameters $m=1931 \pm 14 \pm 22 \ MeV/c^2$ and $\Gamma=271 \pm 22 \pm 29 \ MeV$.

2 data tables

Measured amplitude and phase values for the $I=1/2$ $K \pi$ $\mathcal{S}$-wave as functions of mass obtained from the Model Independent Partial Wave Analysis (MIPWA) of $\eta_c \to K^0_{\scriptscriptstyle S} K^{\pm}\pi^{\mp}$. The amplitudes and phases in the mass interval 14 are fixed to constant values.

Measured amplitude and phase values for the $I=1/2$ $K \pi$ $\mathcal{S}$-wave as functions of mass obtained from the Model Independent Partial Wave Analysis (MIPWA) of $\eta_c \to K^+ K^- \pi^0$. The amplitudes and phases in the mass interval 14 are fixed to constant values.


Measurement of Parity Nonconservation in Atomic Bismuth

Hollister, J.H. ; Apperson, G.R. ; Lewis, L.L. ; et al.
Phys.Rev.Lett. 46 (1981) 643-646, 1981.
Inspire Record 942914 DOI 10.17182/hepdata.20642

Parity-nonconserving optical rotation has been observed and measured on the 8757-ÅA magnetic-dipole absorption line in atomic bismuth vapor. The result, R≡Im(E1M1)=(−10.4±1.7)×10−8, is of the approximate size calculated with use of the Weinberg-Salam theory of the weak neutral-current interaction with sin2θW=0.23.

1 data table

Axis error includes +- 0.0/0.0 contribution (?////NOT GIVEN).


Search for Parity Nonconservation in Atomic Bismuth

Soreide, D.C. ; Roberts, D.E. ; Lindahl, E.G. ; et al.
Phys.Rev.Lett. 36 (1976) 352-355, 1976.
Inspire Record 112866 DOI 10.17182/hepdata.21089

In a search for optical rotation near the 8755-Å magnetic-dipole absorption line in atomic Bi, our first results set an upper limit F<10−6 on a parity nonconserving amplitude associated with the line. This limit improves upon earlier parity tests in atoms by three orders of magnitude. Further improvement of at least another order of magnitude appears possible by this method which should then provide an exacting test of parity conservation in the neutral weak-current interaction in atoms.

1 data table

No description provided.


The total photon deuteron hadronic cross-section in the energy range 0.265-4.215 gev

Armstrong, T.A. ; Hogg, W.R. ; Lewis, G.M. ; et al.
Nucl.Phys.B 41 (1972) 445-473, 1972.
Inspire Record 75161 DOI 10.17182/hepdata.32884

The total cross section for photoproduction of hadrons on the deutron, σ T d , has been measured for photon energies in the range 0.265–40215 GeV. From this, using results for the photon total cross section, obtained previously with the same apparatus, the neutron total cross section has been determined in the resonance region. The resonant structure is found to be quite different from that for the proton. Thereafter the neutron cross section falls off steadily with energy, and the values obtained are consistently lower than those for the proton. Forward scattering amplitudes have been evaluated for the deuteron.

4 data tables

No description provided.

RESONANCE REGION. UNSMEARING CORRECTION APPLIED, GLAUBER CORRECTION NEGLIGIBLE.

HIGHER ENERGY CROSS SECTIONS, IN 200 MEV BINS. OVERALL 3 PCT SYSTEMATIC ERROR IN ADDITION TO QUOTED STATISTICAL ERRORS. NEUTRON/PROTON CROSS SECTION RATIO HAS MEAN VALUE OF 0.94 +- 0.01.

More…

Total hadronic cross-section of gamma rays in hydrogen in the energy range 0.265-GeV to 4.215-GeV

Armstrong, T.A. ; Hogg, W.R. ; Lewis, G.M. ; et al.
Phys.Rev.D 5 (1972) 1640-1652, 1972.
Inspire Record 67298 DOI 10.17182/hepdata.22462

The total cross section of γ rays in hydrogen resulting in hadron production, σT, has been measured over the energy range 265-4215 MeV. A tagging system with narrow energy bins was employed. Structure in the resonance region followed by a steady fall with energy has been observed and the results are analyzed. The forward amplitude of γ-proton scattering is evaluated, and its behavior in the Argand diagram studied as a function of energy. The relationships of the measurements to Regge-pole theory and the vector-dominance model are detailed.

2 data tables

No description provided.

SPIN AVERAGED FORWARD COMPTON SCATTERING AMPLITUDE. IM(AMP) WAS CALCULATED VIA THE OPTICAL THEOREM FROM A SMOOTH FIT TO THE DATA, AND USED IN THE DISPERSION RELATION TO CALCULATE RE(AMP). AT THRESHOLD THE THOMSON AMPLITUDE IS -3.0 MUB*GEV.