Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC $pp$ collision data at $\sqrt{s}=$ 7 and 8 TeV

The ATLAS & CMS collaborations Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 08 (2016) 045, 2016.
Inspire Record 1468068 DOI 10.17182/hepdata.78403

Combined ATLAS and CMS measurements of the Higgs boson production and decay rates, as well as constraints on its couplings to vector bosons and fermions, are presented. The combination is based on the analysis of five production processes, namely gluon fusion, vector boson fusion, and associated production with a $W$ or a $Z$ boson or a pair of top quarks, and of the six decay modes $H \to ZZ, WW$, $\gamma\gamma, \tau\tau, bb$, and $\mu\mu$. All results are reported assuming a value of 125.09 GeV for the Higgs boson mass, the result of the combined measurement by the ATLAS and CMS experiments. The analysis uses the CERN LHC proton--proton collision data recorded by the ATLAS and CMS experiments in 2011 and 2012, corresponding to integrated luminosities per experiment of approximately 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and 20 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. The Higgs boson production and decay rates measured by the two experiments are combined within the context of three generic parameterisations: two based on cross sections and branching fractions, and one on ratios of coupling modifiers. Several interpretations of the measurements with more model-dependent parameterisations are also given. The combined signal yield relative to the Standard Model prediction is measured to be 1.09 $\pm$ 0.11. The combined measurements lead to observed significances for the vector boson fusion production process and for the $H \to \tau\tau$ decay of $5.4$ and $5.5$ standard deviations, respectively. The data are consistent with the Standard Model predictions for all parameterisations considered.

44 data tables

Best fit values of $\sigma_i \cdot \mathrm{B}^f$ for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.

Best fit values of $\sigma_i \cdot \mathrm{B}^f$ relative to their SM prediction for each specific channel $i \to H\to f$, as obtained from the generic parameterisation with 23 parameters for the combination of the ATLAS and CMS measurements, using the $\sqrt{s}$=7 and 8 TeV data. The results are shown together with their total uncertainties and their breakdown into statistical and systematic components. The missing values are either not measured with a meaningful precision and therefore not quoted, in the case of the $H\to ZZ$ decay channel for the $WH$, $ZH$, and $ttH$ production processes, or not measured at all and therefore fixed to their corresponding SM predictions, in the case of the $H\to bb$ decay mode for the $gg\mathrm{F}$ and VBF production processes.

Best fit values of $\sigma(gg\to H\to ZZ)$, $\sigma_i/\sigma_{gg\mathrm{F}}$, and $\mathrm{B}^f/\mathrm{B}^{ZZ}$ from the combined analysis of the $\sqrt{s}$=7 and 8 TeV data. The values involving cross sections are given for $\sqrt{s}$=8 TeV, assuming the SM values for $\sigma_i(7 \mathrm{TeV})/\sigma_i(8 \mathrm{TeV})$. The results are shown for the combination of ATLAS and CMS, and also separately for each experiment, together with their total uncertainties and their breakdown into the four components described in the text. The expected uncertainties in the measurements are also shown.

More…

Observation of $\mathrm{t\overline{t}}$H production

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 120 (2018) 231801, 2018.
Inspire Record 1666824 DOI 10.17182/hepdata.83809

The observation of Higgs boson production in association with a top quark-antiquark pair is reported, based on a combined analysis of proton-proton collision data at center-of-mass energies of $\sqrt{s}=$ 7, 8, and 13 TeV, corresponding to integrated luminosities of up to 5.1, 19.7, and 35.9 fb$^{-1}$, respectively. The data were collected with the CMS detector at the CERN LHC. The results of statistically independent searches for Higgs bosons produced in conjunction with a top quark-antiquark pair and decaying to pairs of W bosons, Z bosons, photons, $\tau$ leptons, or bottom quark jets are combined to maximize sensitivity. An excess of events is observed, with a significance of 5.2 standard deviations, over the expectation from the background-only hypothesis. The corresponding expected significance from the standard model for a Higgs boson mass of 125.09 GeV is 4.2 standard deviations. The combined best fit signal strength normalized to the standard model prediction is 1.26 ${^{+0.31}_{-0.26}}$.

4 data tables

Best fit value of the ttH signal strength modifier $\mu_{\mathrm{ttH}}$, with its 1 and 2 standard deviation confidence intervals ($\sigma$), for the five individual decay channels considered, the combined result for 7+8 TeV alone and for 13 TeV alone, and the overall combined result. The Higgs boson mass is taken to be 125.09 GeV. For the $\mathrm{H}\rightarrow\mathrm{ZZ}$ decay mode, $\mu_{\mathrm{ttH}}$ is constrained to be positive to prevent the corresponding event yield from becoming negative. The SM expectation is shown as a dashed vertical line.

Best fit value, with its uncertainty, of the ttH signal strength modifier $\mu_{\mathrm{ttH}}$, for the five individual decay channels considered, the combined result for 7+8 TeV alone and for 13 TeV alone, and the overall combined result. The total uncertainties are decomposed into their statistical (Stat), experimental systematic (Expt), background theory systematic (Thbgd), and signal theory systematic (Thsig) components.

Distribution of events as a function of the decimal logarithm of S/B, where S and B are the expected post-fit signal (with $\mu_{\mathrm{ttH}}$ = 1) and background yields, respectively, in each bin of the distributions considered in this combination. The shaded histogram shows the expected background distribution. The two hatched histograms, each stacked on top of the background histogram, show the signal expectation for the SM ($\mu_{\mathrm{ttH}}$ = 1) and the observed ($\mu_{\mathrm{ttH}}$ = 1.26) signal strengths.

More…

Search for disappearing tracks as a signature of new long-lived particles in proton-proton collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 08 (2018) 016, 2018.
Inspire Record 1669245 DOI 10.17182/hepdata.84707

A search is presented for long-lived charged particles that decay within the CMS detector and produce the signature of a disappearing track. A disappearing track is an isolated track with missing hits in the outer layers of the silicon tracker, little or no energy in associated calorimeter deposits, and no associated hits in the muon detectors. This search uses data collected with the CMS detector in 2015 and 2016 from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to an integrated luminosity of 38.4 fb$^{-1}$. The results of the search are interpreted in the context of the anomaly-mediated supersymmetry breaking model. The data are consistent with the background-only hypothesis. Limits are set on the product of the cross section for direct production of charginos and their branching fraction to a neutralino and a pion, as a function of the chargino mass and lifetime. At 95% confidence level, charginos with masses below 715 (695) GeV are excluded for a lifetime of 3 (7) ns, as are charginos with lifetimes from 0.5 to 60 ns for a mass of 505 GeV. These are the most stringent limits using a disappearing track signature on this signal model for chargino lifetimes above $\approx$ 0.7 ns.

14 data tables

The expected and observed 95% CL upper limits on the product of the cross section for direct production of charginos and their branching fraction to $\widetilde{\chi}^{0}_{1}\mathrm{\pi^{\pm}}$ as a function of chargino mass for a chargino lifetime of 0.3 ns. The ratio of the vacuum expectation values of the two Higgs doublets, $\tan \beta$, is fixed to 5 with $\mu > 0$, where $\mu$ is the higgsino mass parameter. The direct chargino production cross section includes both $\widetilde{\chi}^{0}_{1}\widetilde{\chi}^\pm_{1}$ and $\widetilde{\chi}^\pm_{1}\widetilde{\chi}^\mp_{1}$ production in roughly a 2:1 ratio for all chargino masses considered, and the branching fraction of $\widetilde{\chi}^\pm_{1} \rightarrow \widetilde{\chi}^{0}_{1}\mathrm{\pi^{\pm}}$ is set to 100%. The theoretical prediction for the AMSB model is also shown.

The expected and observed 95% CL upper limits on the product of the cross section for direct production of charginos and their branching fraction to $\widetilde{\chi}^{0}_{1}\mathrm{\pi^{\pm}}$ as a function of chargino mass for a chargino lifetime of 3.3 ns. The ratio of the vacuum expectation values of the two Higgs doublets, $\tan \beta$, is fixed to 5 with $\mu > 0$, where $\mu$ is the higgsino mass parameter. The direct chargino production cross section includes both $\widetilde{\chi}^{0}_{1}\widetilde{\chi}^\pm_{1}$ and $\widetilde{\chi}^\pm_{1}\widetilde{\chi}^\mp_{1}$ production in roughly a 2:1 ratio for all chargino masses considered, and the branching fraction of $\widetilde{\chi}^\pm_{1} \rightarrow \widetilde{\chi}^{0}_{1}\mathrm{\pi^{\pm}}$ is set to 100%. The theoretical prediction for the AMSB model is also shown.

The expected and observed 95% CL upper limits on the product of the cross section for direct production of charginos and their branching fraction to $\widetilde{\chi}^{0}_{1}\mathrm{\pi^{\pm}}$ as a function of chargino mass for a chargino lifetime of 33 ns. The ratio of the vacuum expectation values of the two Higgs doublets, $\tan \beta$, is fixed to 5 with $\mu > 0$, where $\mu$ is the higgsino mass parameter. The direct chargino production cross section includes both $\widetilde{\chi}^{0}_{1}\widetilde{\chi}^\pm_{1}$ and $\widetilde{\chi}^\pm_{1}\widetilde{\chi}^\mp_{1}$ production in roughly a 2:1 ratio for all chargino masses considered, and the branching fraction of $\widetilde{\chi}^\pm_{1} \rightarrow \widetilde{\chi}^{0}_{1}\mathrm{\pi^{\pm}}$ is set to 100%. The theoretical prediction for the AMSB model is also shown.

More…

Elliptic flow of charm and strange hadrons in high-multiplicity pPb collisions at $\sqrt{s_{_\mathrm{NN}}} =$ 8.16 TeV

The CMS collaboration Sirunyan, A. M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 082301, 2018.
Inspire Record 1670168 DOI 10.17182/hepdata.83911

The elliptic azimuthal anisotropy coefficient ($v_2$) is measured for charm (D$^0$) and strange (K$_\mathrm{S}^0$, $\Lambda$, $\Xi^-$, and $\Omega^-$) hadrons, using a data sample of pPb collisions collected by the CMS experiment, at a nucleon-nucleon center-of-mass energy $\sqrt{s_{_\mathrm{NN}}} =$ 8.16 TeV. A significant positive $v_2$ signal from long-range azimuthal correlations is observed for all particle species in high-multiplicity pPb collisions. The measurement represents the first observation of possible long-range collectivity for open heavy flavor hadrons in small systems. The results suggest that charm quarks have a smaller $v_2$ than the lighter quarks, probably reflecting a weaker collective behavior. This effect is not seen in the larger PbPb collision system at $\sqrt{s_{_\mathrm{NN}}} =$ 5.02 TeV, also presented.

24 data tables

The elliptic flow, $v_{2}$, for $K^{0}_{S}$ as a function of $p_{T}$ in pPb collision at 8.16 TeV.

The elliptic flow, $v_{2}$, for $\Lambda$ as a function of $p_{T}$ in pPb collision at 8.16 TeV.

The elliptic flow, $v_{2}$, for $\Xi^{-}$ as a function of $p_{T}$ in pPb collision at 8.16 TeV.

More…

Version 2
Constraining gluon distributions in nuclei using dijets in proton-proton and proton-lead collisions at $\sqrt{s_{_\mathrm{NN}}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 062002, 2018.
Inspire Record 1672941 DOI 10.17182/hepdata.83198

The pseudorapidity distributions of dijets as a function of their average transverse momentum ($p_\mathrm{T}^\text{ave}$) are measured in proton-lead (pPb) and proton-proton (pp) collisions. The data samples were collected by the CMS experiment at the CERN LHC, at a nucleon-nucleon center-of-mass energy of 5.02 TeV. A significant modification of the pPb spectra with respect to the pp spectra is observed in all $p_\mathrm{T}^\text{ave}$ intervals investigated. The ratios of the pPb and pp distributions are compared to next-to-leading order perturbative quantum chromodynamics calculations with unbound nucleon and nuclear parton distribution functions (PDFs). These results give the first evidence that the gluon PDF at large Bjorken $x$ in lead ions is strongly suppressed with respect to the PDF in unbound nucleons.

42 data tables

The ratio of pPb to pp $\eta_{\mathrm{dijet}}$ spectra for dijets in the range $55 < p_{\mathrm{T}}^{\mathrm{ave}} < 75$ GeV.

The ratio of pPb to pp $\eta_{\mathrm{dijet}}$ spectra for dijets in the range $55 < p_{\mathrm{T}}^{\mathrm{ave}} < 75$ GeV.

The ratio of pPb to pp $\eta_{\mathrm{dijet}}$ spectra for dijets in the range $75 < p_{\mathrm{T}}^{\mathrm{ave}} < 95$ GeV.

More…

Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state of two muons and two $\tau$ leptons in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 11 (2018) 018, 2018.
Inspire Record 1673011 DOI 10.17182/hepdata.85886

A search for exotic Higgs boson decays to light pseudoscalars in the final state of two muons and two $\tau$ leptons is performed using proton-proton collision data recorded by the CMS experiment at the LHC at a center-of-mass energy of 13 TeV in 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. Masses of the pseudoscalar boson between 15.0 and 62.5 GeV are probed, and no significant excess of data is observed above the prediction of the standard model. Upper limits are set on the branching fraction of the Higgs boson to two light pseudoscalar bosons in different types of two-Higgs-doublet models extended with a complex scalar singlet.

1 data table

Expected and observed 95% CL upper limits on (sigma(pp->h)/sigma(pp->hSM)) * B(h -> aa -> mumutautau) as a function of m(a), where h(SM) is the Higgs boson of the standard model, h is the observed particle with mass of 125 GeV, and a denotes a light Higgs-like state, as obtained from the 13 TeV data.


Measurement of the groomed jet mass in PbPb and pp collisions at $\sqrt{s_{_\mathrm{NN}}} =$ 5.02 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 10 (2018) 161, 2018.
Inspire Record 1672962 DOI 10.17182/hepdata.83199

A measurement of the groomed jet mass in PbPb and pp collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV with the CMS detector at the LHC is presented. Jet grooming is a recursive procedure which sequentially removes soft constituents of a jet until a pair of hard subjets is found. The resulting groomed jets can be used to study modifications to the parton shower evolution in the presence of the hot and dense medium created in heavy ion collisions. Predictions of groomed jet properties from the PYTHIA and HERWIG++ event generators agree with the measurements in pp collisions. When comparing the results from the most central PbPb collisions to pp data, a hint of an increase of jets with large jet mass is observed, which could originate from additional medium-induced radiation at a large angle from the jet axis. However, no modification of the groomed mass of the core of the jet is observed for all PbPb centrality classes. The PbPb results are also compared to predictions from the JEWEL and Q-PYTHIA event generators, which predict a large modification of the groomed mass not observed in the data.

12 data tables

Groomed jet energy fraction in pp collision for jets with PTJET 160-180 GeV

Groomed jet energy fraction in PbPb collision for jets with PTJET 160-180 GeV

MG/PTJET for SD (0.1,0.0) in PP collision

More…

Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two b quarks and two $\tau$ leptons in proton-proton collisions at $\sqrt{s}=$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Lett.B 785 (2018) 462, 2018.
Inspire Record 1674926 DOI 10.17182/hepdata.86228

A search for an exotic decay of the Higgs boson to a pair of light pseudoscalar bosons is performed for the first time in the final state with two b quarks and two $\tau$ leptons. The search is motivated in the context of models of physics beyond the standard model (SM), such as two Higgs doublet models extended with a complex scalar singlet (2HDM+S), which include the next-to-minimal supersymmetric SM (NMSSM). The results are based on a data set of proton-proton collisions corresponding to an integrated luminosity of 35.9 fb$^{-1}$, accumulated by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13 TeV. Masses of the pseudoscalar boson between 15 and 60 GeV are probed, and no excess of events above the SM expectation is observed. Upper limits between 3 and 12% are set on the branching fraction $\mathcal{B}$(h $\to$ aa $\to$ 2$\tau$2b) assuming the SM production of the Higgs boson. Upper limits are also set on the branching fraction of the Higgs boson to two light pseudoscalar bosons in different 2HDM+S scenarios. Assuming the SM production cross section for the Higgs boson, the upper limit on this quantity is as low as 20% for a mass of the pseudoscalar of 40 GeV in the NMSSM.

1 data table

Expected and observed 95% CL upper limits on (sigma(pp->h)/sigma(pp->hSM)) * B(h -> aa -> bbtautau) as a function of m(a), where h(SM) is the Higgs boson of the standard model, h is the observed particle with mass of 125 GeV, and a denotes a light Higgs-like state, as obtained from the 13 TeV data.


Observation of the $\chi_\mathrm{b1}$(3P) and $\chi_\mathrm{b2}$(3P) and measurement of their masses

The CMS collaboration Sirunyan, A. M. ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 121 (2018) 092002, 2018.
Inspire Record 1675256 DOI 10.17182/hepdata.85742

The $\chi_\mathrm{b1}$(3P) and $\chi_\mathrm{b2}$(3P) states are observed through their $\Upsilon$(3S) $\gamma$ decays, using an event sample of proton-proton collisions collected by the CMS experiment at the CERN LHC. The data were collected at a center-of-mass energy of 13 TeV and correspond to an integrated luminosity of 80.0 fb$^{-1}$. The $\Upsilon$(3S) mesons are identified through their dimuon decay channel, while the low-energy photons are detected after converting to e$^+$e$^-$ pairs in the silicon tracker, leading to a $\chi_\mathrm{b}$(3P) mass resolution of 2.2 MeV. This is the first time that the $J =$ 1 and 2 states are well resolved and their masses individually measured: 10$\,$513.42 $\pm$ 0.41 (stat) $\pm$ 0.18 (syst) MeV and 10$\,$524.02 $\pm$ 0.57 (stat) $\pm$ 0.18 (syst) MeV; they are determined with respect to the world-average value of the $\Upsilon$(3S) mass, which has an uncertainty of 0.5 MeV. The mass splitting is measured to be 10.60 $\pm$ 0.64 (stat) $\pm$ 0.17 (syst) MeV.

2 data tables

Observation of the $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ and measurement of their masses.

Observation of the $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ and mass splitting measurement.


Search for beyond the standard model Higgs bosons decaying into a $\mathrm{b\overline{b}}$ pair in pp collisions at $\sqrt{s} =$ 13 TeV

The CMS collaboration Sirunyan, Albert M ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
JHEP 08 (2018) 113, 2018.
Inspire Record 1675818 DOI 10.17182/hepdata.86133

A search for Higgs bosons that decay into a bottom quark-antiquark pair and are accompanied by at least one additional bottom quark is performed with the CMS detector. The data analyzed were recorded in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} =$ 13 TeV at the LHC, corresponding to an integrated luminosity of 35.7 fb$^{-1}$. The final state considered in this analysis is particularly sensitive to signatures of a Higgs sector beyond the standard model, as predicted in the generic class of two Higgs doublet models (2HDMs). No signal above the standard model background expectation is observed. Stringent upper limits on the cross section times branching fraction are set for Higgs bosons with masses up to 1300 GeV. The results are interpreted within several MSSM and 2HDM scenarios.

3 data tables

Expected and observed 95% CL upper limits on sigma(pp->b+H(MSSM)+X) * B(H(MSSM) -> bb) in pb as a function of m(H(MSSM)), where H(MSSM) denotes a heavy Higgs-like state like the H and A bosons of MSSM and 2HDM, as obtained from the 13 TeV data.

Expected and observed 95% CL upper limits on tan(beta) as a function of m(A) in the mhmodp benchmark scenario for a higgsino mass parameter of mu=+200 GeV. Since theoretical predictions are not reliable for tan(beta)>60, entries for which tan(beta) would exceed this value are indicated by N/A.

Expected and observed 95% CL upper limits on tan(beta) as a function of m(A) in the hMSSM benchmark scenario. Since theoretical predictions are not reliable for tan(beta)>60, entries for which tan(beta) would exceed this value are indicated by N/A.