Date

Anti-proton - Proton Elastic Cross-sections in the Momentum Range Between 180-{MeV}/$c$ and 600-{MeV}/$c$

Bruckner, W. ; Dobbeling, H. ; Guttner, F. ; et al.
Phys.Lett.B 166 (1986) 113-118, 1986.
Inspire Record 217928 DOI 10.17182/hepdata.30308

Differential cross sections for p̄p elastic scattering have been measured in the full angular range for the p̄ momenta between 180 and 600 MeV/ c . It is found that s- and p-wave scattering is dominant below 300 MeV/ c . The s-wave component in the total cross section is 40–60% below 300 MeV/ c , in contrast to the NN scattering where it is about 90%. The s-, p- and d-wave scattering amplitudes are derived.

3 data tables match query

No description provided.

No description provided.

No description provided.


Single Spin Asymmetry $A_N$ in Polarized Proton-Proton Elastic Scattering at $\sqrt{s}=200$ GeV

The STAR collaboration Adamczyk, L. ; Agakishiev, G. ; Aggarwal, M.M. ; et al.
Phys.Lett.B 719 (2013) 62-69, 2013.
Inspire Record 1117881 DOI 10.17182/hepdata.102952

We report a high precision measurement of the transverse single spin asymmetry $A_N$ at the center of mass energy $\sqrt{s}=200$ GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The $A_N$ was measured in the four-momentum transfer squared $t$ range $0.003 \leqslant |t| \leqslant 0.035$ $\GeVcSq$, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of $A_N$ and its $t$-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this $\sqrt{s}$, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.

3 data tables match query

The asymmetry $\varepsilon(\varphi)/(P_B + P_Y)$ for various $t$-intervals.

The measured single spin asymmetry $A_N$ for five $-t$ intervals.

Fitted value of $r_5$.


Measurement of Proton Proton Elastic Scattering at 6-GeV/c in Polarized Initial and Final Spin States

Borghini, M. ; De Boer, W. ; Fernow, Richard C. ; et al.
Phys.Rev.D 17 (1978) 24-41, 1978.
Inspire Record 134418 DOI 10.17182/hepdata.4518

The differential elastic p−p scattering cross section was measured at 6 GeV/c at the Argonne Zero Gradient Synchrotron in the range P⊥2=0.60−1.0 (GeV/c)2 using a 65% polarized target and a 75% polarized proton beam of intensity 3 × 109 protons/pulse. The polarization of the recoil proton was simultaneously measured with a well calibrated carbon-target polarimeter. All three polarizations were measured perpendicular to the horizontal scattering plane. Our results indicate that P and T invariance are both obeyed to good precision even at our largest P⊥2. Parity invariance implies that the eight single-flip transversity cross sections are zero, so our data gives the magnitudes of the eight remaining pure spin cross sections where all spins are measured. We find that the four double-flip transversity cross sections are nonzero.

4 data tables match query

No description provided.

THE FIVE INDEPENDENT PURE FOUR-SPIN CROSS SECTIONS AS DERIVED FROM THE EIGHT MEASURED THREE-SPIN CROSS SECTIONS ASSUMING P AND T INVARIANCE. THE ABSOLUTE DIFFERENTIAL CROSS SECTION VALUES ASSUME THAT THE SPIN-AVERAGED D(SIG)/DT IS 2.25, 1.17, 0.365 AND 0.167 MB/GEV**2 FOR EACH VALUE OF PT**2 RESPECTIVELY.

WOLFENSTEIN PARAMETERS. POL(NAME=A) IS (N000) OR (0N00), THE ANALYZING POWER AVERAGED OVER TARGET OR BEAM POLARIZATION. POL(NAME=P) IS (00N0), THE POLARIZATION PARAMETER. TIME-REVERSAL INVARIANCE REQUIRES THAT P = A. POL.POL(NAME=CNN) IS (NN00) USING T-INVARIANCE. POL.POL(NAME=DNN) IS (0N0N). POL.POL(NAME=KNN) IS (N00N). POL.POL(NAME=C3N) IS A COMPONENT OF THE TRIPLE SPIN CORRELATION TENSOR. PARITY INVARIANCE REQUIRES THAT C3N = P.

More…

K+ p Interactions at 100-GeV Using a Hybrid Bubble Chamber-Spark Chamber System and a Tagged Beam

Barnes, V.E. ; Carmony, D.D. ; Christian, R.S. ; et al.
Phys.Rev.Lett. 34 (1975) 415, 1975.
Inspire Record 2015 DOI 10.17182/hepdata.21240

We studied K+p interactions at 100 GeV with the Fermi National Accelerator Laboratory 30-in. hydrogen bubble chamber and associated spark-chamber system. We find σtot(K+p)=18.7±1.8 mb and σel(K+p)=2.0±0.4 mb. We present the charged-multiplicity distribution and its moments, and the charge-transfer distribution. The average inelastic charged multiplicity is 〈nc〉=6.65±0.31 and the two-charged-particle correlation functions are f2cc=4.52±1.32 and f2−−=0.47±0.35.

1 data table match query

No description provided.


Version 2
Measurement of the total cross section and $\rho$-parameter from elastic scattering in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 441, 2023.
Inspire Record 2122408 DOI 10.17182/hepdata.128017

In a special run of the LHC with $\beta^\star = 2.5~$km, proton-proton elastic-scattering events were recorded at $\sqrt{s} = 13~$TeV with an integrated luminosity of $340~\mu \textrm{b}^{-1}$ using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam $t$ variable in the range from $-t = 2.5 \cdot 10^{-4}~$GeV$^{2}$ to $-t = 0.46~$GeV$^{2}$ using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section $\sigma_{\textrm{tot}}$, parameters of the nuclear slope, and the $\rho$-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit $t \rightarrow 0$. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the $t$-dependence. The results for $\sigma_{\textrm{tot}}$ and $\rho$ are \begin{equation*} \sigma_{\textrm{tot}}(pp\rightarrow X) = \mbox{104.7} \pm 1.1 \; \mbox{mb} , \; \; \; \rho = \mbox{0.098} \pm 0.011 . \end{equation*} The uncertainty in $\sigma_{\textrm{tot}}$ is dominated by the luminosity measurement, and in $\rho$ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.

11 data tables match query

The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.

The rho-parameter, i.e. the ratio of the real to imaginary part of the elastic scattering amplitude extrapolated to t=0. The systematic uncertainty includes experimental and theoretical uncerainties.

The nuclear slope parameter B from a fit of the form exp(-Bt-Ct^2-Dt^3). The systematic uncertainty includes experimental and theoretical uncerainties.

More…

The total photon deuteron hadronic cross-section in the energy range 0.265-4.215 gev

Armstrong, T.A. ; Hogg, W.R. ; Lewis, G.M. ; et al.
Nucl.Phys.B 41 (1972) 445-473, 1972.
Inspire Record 75161 DOI 10.17182/hepdata.32884

The total cross section for photoproduction of hadrons on the deutron, σ T d , has been measured for photon energies in the range 0.265–40215 GeV. From this, using results for the photon total cross section, obtained previously with the same apparatus, the neutron total cross section has been determined in the resonance region. The resonant structure is found to be quite different from that for the proton. Thereafter the neutron cross section falls off steadily with energy, and the values obtained are consistently lower than those for the proton. Forward scattering amplitudes have been evaluated for the deuteron.

1 data table match query

SPIN AVERAGED FORWARD COMPTON SCATTERING AMPLITUDE. IM(AMP) WAS CALCULATED VIA THE OPTICAL THEOREM FROM A SMOOTH FIT TO THE DATA AND RE(AMP) WAS CALCULATED USING THE FORWARD DISPERSION RELATION. THE ESTIMATE OF -1.7 MUB*GEV FOR THE FIXED POLE CONTRIBUTION IS COMPARABLE WITH THE THOMPSON THRESHOLD AMPLITUDE OF -3 MUB*GEV.


Total hadronic cross-section of gamma rays in hydrogen in the energy range 0.265-GeV to 4.215-GeV

Armstrong, T.A. ; Hogg, W.R. ; Lewis, G.M. ; et al.
Phys.Rev.D 5 (1972) 1640-1652, 1972.
Inspire Record 67298 DOI 10.17182/hepdata.22462

The total cross section of γ rays in hydrogen resulting in hadron production, σT, has been measured over the energy range 265-4215 MeV. A tagging system with narrow energy bins was employed. Structure in the resonance region followed by a steady fall with energy has been observed and the results are analyzed. The forward amplitude of γ-proton scattering is evaluated, and its behavior in the Argand diagram studied as a function of energy. The relationships of the measurements to Regge-pole theory and the vector-dominance model are detailed.

1 data table match query

SPIN AVERAGED FORWARD COMPTON SCATTERING AMPLITUDE. IM(AMP) WAS CALCULATED VIA THE OPTICAL THEOREM FROM A SMOOTH FIT TO THE DATA, AND USED IN THE DISPERSION RELATION TO CALCULATE RE(AMP). AT THRESHOLD THE THOMSON AMPLITUDE IS -3.0 MUB*GEV.


BACKWARD SCATTERING IN pi- p ---> p pi-, anti-p p ---> pi+ pi-, K- p ---> p K- AND anti-p p ---> p anti-p AT 8-GeV/c AND 12-GeV/c

The CERN-Lisbon-Moscow-Neuchatel-College de France-Paris collaboration Armstrong, T.A. ; Baubillier, M. ; Brient, J.C. ; et al.
Nucl.Phys.B 284 (1987) 643, 1987.
Inspire Record 230626 DOI 10.17182/hepdata.33525

Data on the reactions π − p → p π − , p p → π + π − , K − p → pK and p p → p p at 8 and 12 GeV/ c are presented. Our results agree with line reversal symmetry (between π − p → p π − and p p → π + π − ), Regge pole behaviour for non-exotic reactions ( π − p → p π − , p p → π + π − ), and universal behaviour for exotic reactions ( p p → p p , K − p → pK − ) with d σ /d u | u =0 ∼ s −10 excluding the existence of a “glory” mechanism in p p elastic backward scattering in our energy range.

1 data table match query

No description provided.


Precision measurements of anti-proton proton forward elastic scattering parameters in the 3.7-GeV/c to 6.2-GeV/c region

The E760 collaboration Armstrong, T.A. ; Bettoni, D. ; Bharadwaj, V. ; et al.
Phys.Lett.B 385 (1996) 479-486, 1996.
Inspire Record 431921 DOI 10.17182/hepdata.28348

Differential cross sections for p p elastic scattering have been measured for very small momentum transfers at six different incident antiproton momenta in the range 3.7 to 6.2 GeV/c by the detection of recoil protons at scattering angles close to 90°. Forward scattering parameters σ T , b , and ϱ have been determined. For the ϱ-parameter, up to an order of magnitude higher level of precision has been achieved compared to that in earlier experiments. It is found that existing dispersion theory predictions are in disagreement with our results for the ϱ-parameter.

8 data tables match query

Results of the SIG(T)-free analysis. Errors include systematic uncertainties.

Results of the SIG(T)-fixed analysis. Errors include systematic uncertainties.

Measured differential cross section for incident momenta 3.70 GeV/c. Data read from plot. Relative errors are small and not given here.

More…

Phase shift analysis of K+p elastic scattering at 780 MeV/c

Focardi, S. ; Minguzzi-Ranzi, A. ; Monari, L. ; et al.
Phys.Lett.B 24 (1967) 90461 314-317, 1967.
Inspire Record 1389646 DOI 10.17182/hepdata.29618

A phase shift analysis of the K+p elastic scattering at 780 MeV/c has been performed. The experimental differential cross section is best explained by a solution with dominant s wave, negative s wave phase shift (−42.7 ± 1 deg.) and small contributions of p and d waves.

1 data table match query

Corrected for PI+ P events and scanning efficiency.