Differential cross sections for the elastic scattering of negative kaons on protons are presented for 19 momenta between 1.732 GeV/ c and 2.466 GeV/ c . The general features of the cross sections are discussed.
No description provided.
No description provided.
No description provided.
Differential cross sections for elastic scattering of negative kaons on protons are presented for 13 incident laboratory momenta between 1094 MeV/c and 1377 MeV/c. The data show the characteristic forward diffraction-like peak and backward dip and are adequately described in shape by certain published partial-wave analyses of the N system.
No description provided.
No description provided.
No description provided.
Differential cross sections for elastic scattering of negative pions on protons are presented for 16 momenta between 996 MeV/ c and 1342 MeV/ c . The cross sections are compared with the predictions from published phase-shift analyses.
No description provided.
Measurements of complete angular distributions of elastic K + p scattering at closely spaced incident momenta from 1368 to 2259 MeV/ c are presented and discussed. A PDP-8 computer controlled system of scintillation counters and core-readout wire spark chambers was used for the detection of elastic events. Diffractive behaviour is already present at the lowest measured momentum and becomes more prominent as the incident momentum increases. An expansion of the angular distributions in terms of Legendre polynomials shows no marked structure of the expansion coefficients as functions of the incident momentum. Our measurements can be adequately described by a number of existing phase shift solutions within 5% of their published values. Also Regge pole extrapolations represent our data satisfactorily.
No description provided.
No description provided.
No description provided.
Photon diffractive dissociation, $\gamma p \to Xp$, has been studied at HERA with the ZEUS detector using $ep$ interactions where the virtuality $Q^2$ of the exchanged photon is smaller than 0.02 GeV$^2$. The squared four-momentum $t$ exchanged at the proton vertex was determined in the range $0.073<|t|<0.40$ GeV$^2$ by measuring the scattered proton in the ZEUS Leading Proton Spectrometer. In the photon-proton centre-of-mass energy interval $176<W<225$ GeV and for masses of the dissociated photon system $4<M_X<32$ GeV, the $t$ distribution has an exponential shape, $dN/d|t| \propto \exp{(-b|t|)}$, with a slope parameter $b=6.8 \pm 0.9$~(stat.)~$ ^{+1.2}_{-1.1}$~(syst.)~GeV$^{-2}$.
T is the squared four momentum transfer at the proton vertex.
SLOPE of the DN/DT distribution.
We present results from a measurement of double diffraction dissociation in $\bar pp$ collisions at the Fermilab Tevatron collider. The production cross section for events with a central pseudorapidity gap of width $\Delta\eta^0>3$ (overlapping $\eta=0$) is found to be $4.43\pm 0.02{(stat)}{\pm 1.18}{(syst) mb}$ [$3.42\pm 0.01{(stat)}{\pm 1.09}{(syst) mb}$] at $\sqrt{s}=1800$ [630] GeV. Our results are compared with previous measurements and with predictions based on Regge theory and factorization.
Cross sections for double diffractive production.
Photon proton cross sections for elastic light vector meson production, σelνp, inelastic diffractive production, σndνp, non-diffractive production, σdνp, as well as the total cross section, σtotνp, have been measured at an average υp center of mass energy of 180 GeV with the ZEUS detector at HERA. The resulting values are σelνp = 18 ± 7 μb, σdνp = 33 ± 8 μb, σndνp = 91 ± 11 μb, and σtotνp 143 ± 17 μb, where the errors include statistical and systematic errors added in quadrature.
Errors contain both statistics and systematics.
We report the first observation of diffractively produced W bosons. In a sample of W -> e nu events produced in p-barp collisions at sqrt{s}=1.8 TeV, we find an excess of events with a forward rapidity gap, which is attributed to diffraction. The probability that this excess is consistent with non-diffractive production is 1.1 10^{-4} (3.8 sigma). The relatively low fraction of W+Jet events observed within this excess implies that mainly quarks from the pomeron, which mediates diffraction, participate in W production. The diffractive to non-diffractive W production ratio is found to be R_W=(1.15 +/- 0.55)%.
No description provided.
This paper presents the first analysis of diffractive photon dissociation events in deep inelastic positron-proton scattering at HERA in which the proton in the final state is detected and its momentum measured. The events are selected by requiring a scattered proton in the ZEUS leading proton spectrometer (LPS) with $\xl>0.97$, where $\xl$ is the fraction of the incoming proton beam momentum carried by the scattered proton. The use of the LPS significantly reduces the contamination from events with diffractive dissociation of the proton into low mass states and allows a direct measurement of $t$, the square of the four-momentum exchanged at the proton vertex. The dependence of the cross section on $t$ is measured in the interval $0.073<|t|<0.4$~$\gevtwo$ and is found to be described by an exponential shape with the slope parameter $b=\tslopeerr$. The diffractive structure function $\ftwodfour$ is presented as a function of $\xpom \simeq 1-\xl$ and $\beta$, the momentum fraction of the struck quark with respect to $\xpom$, and averaged over the $t$ interval $0.073<|t|<\ftwodfourtmax$~$\gevtwo$ and the photon virtuality range $5<Q^2<20~\gevtwo$. In the kinematic range $4 \times 10^{-4} < \xpom < 0.03$ and $0.015<\beta<0.5$, the $\xpom$ dependence of $\ftwodfour$ is fitted with a form $\xpoma$, yielding $a= \ftwodfouraerr$. Upon integration over $t$, the structure function $\ftwod$ is determined in a kinematic range extending to higher $\xpom$ and lower $\beta$ compared to our previous analysis; the results are discussed within the framework of Regge theory.
The measured distribution of T, the squared momentum transfer to the virtual pluton.
Slope of the T distribution.
The structure function F2(NAME=D4).
The DIS diffractive cross section, $d\sigma^{diff}_{\gamma^* p \to XN}/dM_X$, has been measured in the mass range $M_X < 15$ GeV for $\gamma^*p$ c.m. energies $60 < W < 200$ GeV and photon virtualities $Q^2 = 7$ to 140 GeV$^2$. For fixed $Q^2$ and $M_X$, the diffractive cross section rises rapidly with $W$, $d\sigma^{diff}_{\gamma^*p \to XN}(M_X,W,Q^2)/dM_X \propto W^{a^{diff}}$ with $a^{diff} = 0.507 \pm 0.034 (stat)^{+0.155}_{-0.046}(syst)$ corresponding to a $t$-averaged pomeron trajectory of $\bar{\alphapom} = 1.127 \pm 0.009 (stat)^{+0.039}_{-0.012} (syst)$ which is larger than $\bar{\alphapom}$ observed in hadron-hadron scattering. The $W$ dependence of the diffractive cross section is found to be the same as that of the total cross section for scattering of virtual photons on protons. The data are consistent with the assumption that the diffractive structure function $F^{D(3)}_2$ factorizes according to $\xpom F^{D(3)}_2 (\xpom,\beta,Q^2) = (x_0/ \xpom)^n F^{D(2)}_2(\beta,Q^2)$. They are also consistent with QCD based models which incorporate factorization breaking. The rise of $\xpom F^{D(3)}_2$ with decreasing $\xpom$ and the weak dependence of $F^{D(2)}_2$ on $Q^2$ suggest a substantial contribution from partonic interactions.
Cross section for diffractive scattering.
Cross section for diffractive scattering.
Cross section for diffracitve scattering.