A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The data sets used correspond to an integrated luminosity of up to 5 and 20$^{-1}$ of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak $t$-channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is $m_\mathrm{t}$ = 172.52 $\pm$ 0.14 (stat) $\pm$ 0.30 (syst) GeV, with a total uncertainty of 0.33 GeV.
Uncertainties on the $m_{t}$ values extracted in the LHC, ATLAS, and CMS combinations arising from the categories described in the text, sorted in order of decreasing value of the combined LHC uncertainty.
Strong interactions preserve an approximate isospin symmetry between up ($u$) and down ($d$) quarks, part of the more general flavor symmetry. In the case of $K$ meson production, if this isospin symmetry were exact, it would result in equal numbers of charged ($K^+$ and $K^-$) and neutral ($K^0$ and $\overline K^{\,0}$) mesons in the final state. Here, we report results on the relative abundance of charged over neutral $K$ meson production in argon and scandium nuclei collisions at a center-of-mass energy of 11.9 GeV per nucleon pair. We find that the production of $K^+$ and $K^-$ mesons at mid-rapidity is $(18.4\pm 6.1)\%$ higher than that of the neutral $K$ mesons. Although with large uncertainties, earlier data on nucleus-nucleus collisions in the collision center-of-mass energy range $2.6 < \sqrt{s_{NN}} < 200$~\GeV are consistent with the present result. Using well-established models for hadron production, we demonstrate that known isospin-symmetry breaking effects and the initial nuclei containing more neutrons than protons lead only to a small (few percent) deviation of the charged-to-neutral kaon ratio from unity at high energies. Thus, they cannot explain the measurements. The significance of the flavor-symmetry violation beyond the known effects is 4.7$\sigma$ when the compilation of world data with uncertainties quoted by the experiments is used. New systematic, high-precision measurements and theoretical efforts are needed to establish the origin of the observed large isospin-symmetry breaking.
Numerical data for $K^0_S$ from Figure 1.
Numerical data for $K^0_S$ from Figure 1.
Numerical data for $(K^+ + K^-)/2$ from Figure 1.
The femtoscopic study of pairs of identical pions is particularly suited to investigate the effective source function of particle emission, due to the resulting Bose-Einstein correlation signal. In small collision systems at the LHC, pp in particular, the majority of the pions are produced in resonance decays, which significantly affect the profile and size of the source. In this work, we explicitly model this effect in order to extract the primordial source in pp collisions at $\sqrt{s} = 13$ TeV from charged $\pi$-$\pi$ correlations measured by ALICE. We demonstrate that the assumption of a Gaussian primordial source is compatible with the data and that the effective source, resulting from modifications due to resonances, is approximately exponential, as found in previous measurements at the LHC. The universality of hadron emission in pp collisions is further investigated by applying the same methodology to characterize the primordial source of K-p pairs. The size of the primordial source is evaluated as a function of the transverse mass ($m_{\rm T}$) of the pairs, leading to the observation of a common scaling for both $\pi$-$\pi$ and K-p, suggesting a collective effect. Further, the present results are compatible with the $m_{\rm T}$ scaling of the p-p and p$-\Lambda$ primordial source measured by ALICE in high multiplicity pp collisions, providing compelling evidence for the presence of a common emission source for all hadrons in small collision systems at the LHC. This will allow the determination of the source function for any hadron--hadron pairs with high precision, granting access to the properties of the possible final-state interaction among pairs of less abundantly produced hadrons, such as strange or charmed particles.
K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in HM pp collisions at $\sqrt{s_{\mathrm {NN}}}=13 $ TeV (1.2<$m_T$<1.4 GeV/$c^{2}$).
K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in HM pp collisions at $\sqrt{s_{\mathrm {NN}}}=13 $ TeV (1.4<$m_T$<1.5 GeV/$c^{2}$).
K$^+$p (K$^+$p $\oplus$ K$^-\overline{\mathrm p}$) correlation function in HM pp collisions at $\sqrt{s_{\mathrm {NN}}}=13 $ TeV (1.5<$m_T$<1.8 GeV/$c^{2}$).
The first measurement of the multiplicity dependence of intra-jet properties of leading charged-particle jets in proton-proton (pp) collisions is reported. The mean charged-particle multiplicity and jet fragmentation distributions are measured in minimum-bias and high-multiplicity pp collisions at $\sqrt{s}$ = 13 TeV using the ALICE detector. Jets are reconstructed from charged particles produced in the midrapidity region ($|\eta|<0.9$) using the sequential recombination anti-$k_{\rm T}$ algorithm with jet resolution parameters $R=0.2$, 0.3, and 0.4 for the transverse momentum ($p_{\rm T}$) interval 5-110 GeV/$c$. High-multiplicity events are selected by the forward V0 scintillator detectors. The mean charged-particle multiplicity inside the leading jet cone rises monotonically with increasing jet $p_{\rm T}$ in qualitative agreement with previous measurements at lower energies. The distributions of jet fragmentation function variables $z^{\rm ch}$ and $\xi^{\rm ch}$ are measured for different jet-$p_{\rm T}$ intervals. Jet-$p_{\rm T}$ independent fragmentation of leading jets is observed for wider jets except at high- and low-$z^{\rm ch}$. The observed hump-backed plateau structure in the $\xi^{\rm ch}$ distribution indicates suppression of low-$p_{\rm T}$ particles. In high-multiplicity events, an enhancement of the fragmentation probability of low-$z^{\rm ch}$ particles accompanied by a suppression of high-$z^{\rm ch}$ particles is observed compared to minimum-bias events. This behavior becomes more prominent for low-$p_{\rm T}$ jets with larger jet radius. The results are compared with predictions of QCD-inspired event generators, PYTHIA 8 with Monash 2013 tune and EPOS LHC. It is found that PYTHIA 8 qualitatively reproduces the jet modification in high-multiplicity events except at high jet $p_{\rm T}$. These measurements provide important constraints to models of jet fragmentation.
Mean number of charged particles ($\langle N_{\mathrm{ch}} \rangle$) within leading charged-particle jets as a function of $p_{T}^{\mathrm{jet, ch}}$ for minimum-bias (MB) pp collisions.
Mean number of charged particles ($\langle N_{\mathrm{ch}} \rangle$) within leading charged-particle jets as a function of $p_{T}^{\mathrm{jet, ch}}$ for high-multiplicity (HM) pp collisions.
The ratio of $\langle N_{\mathrm{ch}} \rangle$ between high-multiplicity (HM) and minimum-bias (MB) events as a function of $p_{T}^{\mathrm{jet, ch}}$ for pp collisions.
Results on the transverse spherocity dependence of light-flavor particle production ($\pi$, K, p, $\phi$, ${\rm K^{*0}}$, ${\rm K}^{0}_{\rm{S}}$, $\Lambda$, $\Xi$) at midrapidity in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV were obtained with the ALICE apparatus. The transverse spherocity estimator ($S_{{\rm O}}^{{\it p}_{\rm T}=1}$) categorizes events by their azimuthal topology. Utilizing narrow selections on $S_{\text{O}}^{{\it p}_{\rm T}=1}$, it is possible to contrast particle production in collisions dominated by many soft initial interactions with that observed in collisions dominated by one or more hard scatterings. Results are reported for two multiplicity estimators covering different pseudorapidity regions. The $S_{{\rm O}}^{{\it p}_{\rm T}=1}$ estimator is found to effectively constrain the hardness of the events when the midrapidity ($\left | \eta \right |< 0.8$) estimator is used. The production rates of strange particles are found to be slightly higher for soft isotropic topologies, and severely suppressed in hard jet-like topologies. These effects are more pronounced for hadrons with larger mass and strangeness content, and observed when the topological selection is done within a narrow multiplicity interval. This demonstrates that an important aspect of the universal scaling of strangeness enhancement with final-state multiplicity is that high-multiplicity collisions are dominated by soft, isotropic processes. On the contrary, strangeness production in events with jet-like processes is significantly reduced. The results presented in this article are compared with several QCD-inspired Monte Carlo event generators. Models that incorporate a two-component phenomenology, either through mechanisms accounting for string density, or thermal production, are able to describe the observed strangeness enhancement as a function of $S_{{\rm O}}^{{\it p}_{\rm T}=1}$.
Spherocity distributions with respect to different multiplicity selections.
<pT> vs <dN_{#pi}/dEta> for different multiplicity and spherocity classes.
pT differential Phi spectra as a function of spherocity within 0-1% nTracklets.
Measurements of charged-particle production in pp, p$-$Pb, and Pb$-$Pb collisions in the toward, away, and transverse regions with the ALICE detector are discussed. These regions are defined event-by-event relative to the azimuthal direction of the charged trigger particle, which is the reconstructed particle with the largest transverse momentum ($p_{\mathrm{T}}^{\rm trig}$) in the range $8
$R_\mathrm{T}$ distribution using events with trigger particles $5<p_\mathrm{T}^\mathrm{trig}<40~\mathrm{GeV}/c$ in the pseudorapidity range of $|\eta|<0.8$ and with $p_\mathrm{T}>0.5~\mathrm{GeV}/c$ in pp collisions at $\sqrt{s}=2.76~\mathrm{TeV}$
$R_\mathrm{T}$ distribution using events with trigger particles $5<p_\mathrm{T}^\mathrm{trig}<40~\mathrm{GeV}/c$ in the pseudorapidity range of $|\eta|<0.8$ and with $p_\mathrm{T}>0.5~\mathrm{GeV}/c$ in pp collisions at $\sqrt{s}=5.02~\mathrm{TeV}$
$R_\mathrm{T}$ distribution using events with trigger particles $5<p_\mathrm{T}^\mathrm{trig}<40~\mathrm{GeV}/c$ in the pseudorapidity range of $|\eta|<0.8$ and with $p_\mathrm{T}>0.5~\mathrm{GeV}/c$ in pp collisions at $\sqrt{s}=7~\mathrm{TeV}$
Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at $\sqrt{s}=13$ TeV and p$-$Pb collisions at $\sqrt{s_\mathrm{NN}} = 5.02$ TeV. The correlation functions are measured as a function of relative azimuthal angle $\Delta\varphi$ and pseudorapidity separation $\Delta\eta$ for pairs of primary charged particles within the pseudorapidity interval $|\eta| < 0.9$ and the transverse-momentum interval $1 < p_{\rm T} < 4$ GeV/$c$. Flow coefficients are extracted for the long-range correlations ($1.6 < |\Delta\eta| <1.8$) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events.
High and low multiplicity long-range delta phi correlations
Jet fragmentation yields of near and away side as a function of multiplicity class and and the ratio of them, please see the definition of x-axis
The second and third harmonic coefficients as a function of transverse momentum in pp and p--Pb collisions.
The NA61/SHINE experiment at the CERN Super Proton Synchrotron studies the onset of deconfinement in strongly interacting matter through a beam energy scan of particle production in collisions of nuclei of varied sizes. This paper presents results on inclusive double-differential spectra, transverse momentum and rapidity distributions and mean multiplicities of $\pi^\pm$, $K^\pm$, $p$ and $\bar{p}$ produced in $^{40}$Ar+$^{45}$Sc collisions at beam momenta of 13$A$, 19$A$, 30$A$, 40$A$, 75$A$ and 150$A$~\GeVc. The analysis uses the 10% most central collisions, where the observed forward energy defines centrality. The energy dependence of the $K^\pm$/$\pi^\pm$ ratios as well as of inverse slope parameters of the $K^\pm$ transverse mass distributions are placed in between those found in inelastic $p$+$p$ and central Pb+Pb collisions. The results obtained here establish a system-size dependence of hadron production properties that so far cannot be explained either within statistical or dynamical models.
Two-dimensional distributions ($y$ vs. $p_T$ ) of double differential yields of $p$ at 13$A$ GeV/c
Two-dimensional distributions ($y$ vs. $p_T$ ) of double differential yields of $\pi^+$ at 13$A$ GeV/c
Two-dimensional distributions ($y$ vs. $p_T$ ) of double differential yields of $\pi^-$ at 13$A$ GeV/c
The Chiral Magnetic Wave (CMW) phenomenon is essential to provide insights into the strong interaction in QCD, the properties of the quark-gluon plasma, and the topological characteristics of the early universe, offering a deeper understanding of fundamental physics in high-energy collisions. Measurements of the charge-dependent anisotropic flow coefficients are studied in Pb-Pb collisions at center-of-mass energy per nucleon-nucleon collision $\sqrt{s_{\mathrm{NN}}}=$ 5.02 TeV to probe the CMW. In particular, the slope of the normalized difference in elliptic ($v_{2}$) and triangular ($v_{3}$) flow coefficients of positively and negatively charged particles as a function of their event-wise normalized number difference, is reported for inclusive and identified particles. The slope $r_{3}^{\rm Norm}$ is found to be larger than zero and to have a magnitude similar to $r_{2}^{\rm Norm}$, thus pointing to a large background contribution for these measurements. Furthermore, $r_{2}^{\rm Norm}$ can be described by a blast wave model calculation that incorporates local charge conservation. In addition, using the event shape engineering technique yields a fraction of CMW ($f_{\rm CMW}$) contribution to this measurement which is compatible with zero. This measurement provides the very first upper limit for $f_{\rm CMW}$, and in the 10-60% centrality interval it is found to be 26% (38%) at 95% (99.7%) confidence level.
Normalized $\Delta\it{v}_{2}$ slope of charged hadrons as a function of centrality in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.
Normalized $\Delta\it{v}_{2}$ slope of kaons as a function of centrality in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.
Normalized $\Delta\it{v}_{2}$ slope of pions as a function of centrality in Pb-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV.
The transverse momentum ($p_{\rm T}$) and centrality dependence of the nuclear modification factor $R_{\rm AA}$ of prompt and non-prompt J$/\psi$, the latter originating from the weak decays of beauty hadrons, have been measured by the ALICE collaboration in Pb$-$Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 5.02 TeV. The measurements are carried out through the ${\rm e}^{+}{\rm e}^{-}$ decay channel at midrapidity ($|y| < 0.9$) in the transverse momentum region $1.5 < p_{\rm T} < 10$ GeV/$c$. Both prompt and non-prompt J$/\psi$ measurements indicate a significant suppression for $p_{\rm T} >$ 5 GeV/$c$, which becomes stronger with increasing collision centrality. The results are consistent with similar LHC measurements in the overlapping $p_{\rm T}$ intervals, and cover the kinematic region down to $p_{\rm T}$ = 1.5 GeV/$c$ at midrapidity, not accessible by other LHC experiments. The suppression of prompt J$/\psi$ in central and semicentral collisions exhibits a decreasing trend towards lower transverse momentum, described within uncertainties by models implementing J$/\psi$ production from recombination of c and $\overline{\rm c}$ quarks produced independently in different partonic scatterings. At high transverse momentum, transport models including quarkonium dissociation are able to describe the suppression for prompt J$/\psi$. For non-prompt J$/\psi$, the suppression predicted by models including both collisional and radiative processes for the computation of the beauty-quark energy loss inside the quark$-$gluon plasma is consistent with measurements within uncertainties.
Non-prompt J/$\psi$ fraction as a function of transverse momentum in Pb-Pb at 5.02 TeV, centrality 0-10%
Non-prompt J/$\psi$ fraction as a function of transverse momentum in Pb-Pb at 5.02 TeV, centrality 10-30%
Non-prompt J/$\psi$ fraction as a function of transverse momentum in Pb-Pb at 5.02 TeV, centrality 30-50%