Measurement of Differential Branching Fractions of Inclusive ${B \to X_u \, \ell^+\, \nu_{\ell}}$ Decays

The Belle collaboration Cao, L. ; Sutcliffe, W. ; Van Tonder, R. ; et al.
Phys.Rev.Lett. 127 (2021) 261801, 2021.
Inspire Record 1895149 DOI 10.17182/hepdata.131599

The first measurements of differential branching fractions of inclusive semileptonic ${B \to X_u \, \ell^+\, \nu_{\ell}}$ decays are performed using the full Belle data set of 711 fb$^{-1}$ of integrated luminosity at the $\Upsilon(4S)$ resonance and for $\ell = e, \mu$. Differential branching fractions are reported as a function of the lepton momentum, the four-momentum-transfer squared, light-cone momenta, the hadronic mass, and the hadronic mass squared. They are obtained by subtracting the backgrounds from semileptonic ${B \to X_c \, \ell^+\, \nu_{\ell}}$ decays and other processes, and corrected for resolution and acceptance effects. The measured distributions are compared to predictions from inclusive and hybrid ${B \to X_u \, \ell^+\, \nu_{\ell}}$ calculations.

50 data tables

The measured differential branching fractions as a function of the lepton energy in the $B$ rest frame ($E_\ell^B$).

The measured differential branching fractions as a function of the four-momentum-transfer squared of the $B$ to the $X_u$ system $q^{2}$.

The measured differential branching fractions as a function of the invariant hadronic mass of the $X_u$ system ($M_X$).

More…

Measurement of the hadronic cross-section for the scattering of two virtual photons at LEP.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 24 (2002) 17-31, 2002.
Inspire Record 563730 DOI 10.17182/hepdata.48895

The interaction of virtual photons is investigated using the reaction e+e- -> e+e- hadrons based on data taken by the OPAL experiment at e+e- centre-of-mass energies sqrt(s_ee)=189-209 GeV, for W>5 GeV and at an average Q^2 of 17.9 GeV^2. The measured cross-sections are compared to predictions of the Quark Parton Model (QPM), to the Leading Order QCD Monte Carlo model PHOJET to the NLO prediction for the reaction e+e- -> e+e-qqbar, and to BFKL calculations. PHOJET, NLO e+e- -> e+e-qqbar, and QPM describe the data reasonably well, whereas the cross-section predicted by a Leading Order BFKL calculation is too large.

11 data tables

Total cross section in the given phase space and assuming ALPHA = 1/137.

Differential cross section as a function of X where X is the maximum value of X1 or X2, the upper and lower vertex values.

Differential cross section as a function of Q**2 where Q**2 is the maximum value of Q1**2 or Q2**2, the upper and lower vertex values.

More…

Elastic Scattering Measurement of the Negative Pion Radius

Dally, E.B. ; Hauptman, J.M. ; Kubic, J. ; et al.
Phys.Rev.Lett. 48 (1982) 375-378, 1982.
Inspire Record 177923 DOI 10.17182/hepdata.20609

A new measurement of the elastic scattering of 250-GeV/c negative pions by electrons provides form-factor results from 0.0368

1 data table

No description provided.


Measurement of the $\pi^-$ Form-factor

Dally, E.B. ; Drickey, Darrell James ; Hauptman, J.M. ; et al.
Phys.Rev.D 24 (1981) 1718-1735, 1981.
Inspire Record 172687 DOI 10.17182/hepdata.26467

An experiment to measure the electromagnetic form factor of the negative π meson has been carried out at Fermilab by elastically scattering 100-GeV/c pions from the atomic electrons in a liquid-hydrogen target. We find that the elastic differential scattering cross section is characterized by a root-mean-square pion charge radius of 0.56±0.04 fm. This paper described our experimental design, measurement resolutions, event triggering logic, event reconstruction, experimental corrections, and form-factor results.

3 data tables

No description provided.

Axis error includes +- 0.54/0.54 contribution (EVENT-FINDING CORRECTIONS).

No description provided.


Direct Measurement of the pi- Form-Factor.

Dally, E.B. ; Drickey, Darrell James ; Hauptman, J.M. ; et al.
Phys.Rev.Lett. 39 (1977) 1176-1179, 1977.
Inspire Record 123313 DOI 10.17182/hepdata.20975

We have measured the electromagnetic form factor of the charged pion by direct scattering of 100-GeV/c π− from stationary electrons in a liquid-hydrogen target at Fermilab. The deviations from the pointlike pion-scattering cross section may be characterized by a root-mean-square charge radius for the pion of 〈rπ2〉12=0.56±0.04 F.

1 data table

No description provided.