We have determined the pion charge exchange cross section on hydrogen for π ° mesons emitted at 180° by measuring neutron time-of-flight. Using known values of the p-wave phase shifts we have deduced the contribution of the s-wave. We obtain a value for the quantity a 1 − a 3 (in h = c = m =1 units where m is the pion mass) =0.270±0.014 in agreement within the errors with recent theoretical calculations. We also find a value of 114±55 μb / sr for the cross section in the center of mass system for radiative pion capture at 22.6 MeV (gamma ray emitted at 180°).
No description provided.
The final results of an experimental investigation of the reaction γ+n→p+π− performed with a deuterium bubble chamber at the 1 GeV Frascati electrosynchrotron are presented. Total and differential cross-sections on neutrons are extracted by means of the spectator model, the reliability of which has been checked by numerous tests and is extensively discussed. The problems of a possible isotensor component in the electromagnetic current, the time-reversal invariance of the electromagnetic interactions and the photoproduction of the Roper resonance are considered in detail.
No description provided.
No description provided.
No description provided.
We have measured the ratio of the cross section for γ+n→π0+n to the cross section for γ+p→π0+p at 4.7 and 8.2 GeV. The measurements were made by detecting the recoil nucleons in coincidence with the decay γ rays of the π0's produced from a deuterium target. At 4.7 GeV the cross-section ratio, R≡σ(γ+n→π0+n)σ(γ+p→π0+p), is less than 1.0 at low t, with an indication of a dip at about t=−0.7(GeVc)2, and rises to 1.0 at high t. The ratios at the higher energy have less structure and are uniformly closer to 1.0.
No description provided.
No description provided.
Elastic electron proton scattering has been used to check the validity of the dipole fit of the proton form factors at momentum transfer between 0.05 and 0.30 (GeV/ c ) 2 . The general behaviour of the cross sections is in agreement with previous measurements and is close to the dipole predictions but there is the suggestion of some small amplitude deviations. It is speculated that these deviations may be related to similar effects in the proton formfactor derived from the ISR pp elastic scattering data via a Chou-Yang model.
D(SIG(N=DIPOLE))/D(OMEGA) is cross-section derived in the assumption that both the magnetic and electric form - factors of the proton can be expressed by the dipole formula G(q**2) = 1/(1 + q**2/0.71)**2. Data are read from graph by BVP.
D(SIG(N=DIPOLE))/D(OMEGA) is cross-section derived in the assumption that both the magnetic and electric form - factors of the proton can be expressed by the dipole formula G(q**2) = 1/(1 + q**2/0.71)**2. Data are read from graph by BVP.
Results of fit of the combined data samples of Table 1 and Table 2. Data points was fitted by formula A + B*q**2 + C*sin(OMEGA*q**2 + PHI).
None
APPROXIMATELY CONSTANT MOMENTUM TRANSFER.
None
No description provided.
No description provided.
No description provided.
The reaction γ+p→π++n has been measured for incident γ-ray energies from 0.7 to 8 GeV and recoil lab angles from 170° to 180° using the Cornell 10-GeV synchrotron. The data presented here cover the transition region between the resonance region and the high-energy region studied at SLAC. The results are compared with various phenomenological Regge-pole analyses and with similar data on π0 photoproduction taken at DESY.
No description provided.
No description provided.
We have measured the differential cross section of the reaction π − p→ π − p in the range 0.92 ⩽ cos θ c.m. ⩽ 0.99 at 15 momenta between 0.875 and 1.580 GeV/ c . The results we report complete the available data; previous measurements of this reaction do not extend beyond cos θ c.m. =0.90. We compare our experimental results with dispersion relation predictions. A comparison of our results for B , the slope of the differential cross section, with earlier results shows many discrepancies.
No description provided.
No description provided.
No description provided.
In this paper we present the π + p differential elastic scattering cross sections at five momenta between 0.6 and 0.8 GeV/ c . The data were collected in a bubble chamber exposure and consequently are susceptible to different systematic errors from counter experiments. Our results are generally in good agreement with those of counter experiments in the same momentum range and with the predictions of the various elastic partial wave analyses. The majority of partial wave analyses do not however yield parameters which fit our data in detail without modification.
No description provided.
No description provided.
No description provided.
We present results on the differential cross sections for the process K + n → K 0 p extracted from the reaction K + d → K 0 pp measured at 13 momenta between 0.64 and 1.51 GeV/ c .
THESE TOTAL CROSS SECTIONS WERE PRESENTED WITH MORE EXPERIMENTAL DETAILS IN G. GIACOMELLI ET AL., NP B37, 577 (1972).
REACTION HAS A SPECTATOR PROTON. THESE ARE NOT FREE NEUTRON CROSS SECTIONS. A 250 MEV/C MOMENTUM CUT IS APPLIED TO THE SPECTATOR MOMENTUM AND D(SIG)/DOMEGA THEN NORMALIZED TO THE UNCUT TOTAL CROSS SECTION FOR K+ DEUT --> K0 P P.