We have directly measured the ZZ-gamma and Z-gamma-gamma couplings by studying p pbar --> l+ l- gamma + X, (l = e, mu) events at the CM energy of 1.8$TeV with the D0 detector at the Fermilab Tevatron Collider. A fit to the transverse energy spectrum of the photon in the signal events, based on the data set corresponding to an integrated luminosity of 13.9 pb~-1 ($13.3 pb~-1) for the electron (muon) channel, yields the following 95% confidence level limits on the anomalous CP-conserving ZZ-gamma couplings: -1.9 < h~Z_30 < 1.8 (h~Z_40 = 0), and -0.5 < h~Z_40 < 0.5 (h~Z_30 = 0), for a form-factor scale Lambda = 500 GeV. Limits for the Z-gamma-gamma$ couplings and CP-violating couplings are also discussed.
The anomalous CP-conserving Z Z GAMMA. CONST(NAME=SCALE) is the model parameter, used in the modification of the couplings as follows: h = hi0/(1 + M(gamma Z)**2/CONT(NAME=SCALE)**2)**n. See article for details.
The DO collaboration reports on a search for the Standard Model top quark in pbar-p collisions at Sqrt(s)=1.8TeV at the Fermilab Tevatron, with an integrated luminosity of approximately 50pb-1. We have searched for t-tbar production in the dilepton and single-lepton decay channels, with and without tagging of b-quark jets. We observed 17 events with an expected background of 3.8+/-0.6 events. The probability for an upward fluctuation of the background to produce the observed signal is 2.0E-6 (equivalent to 4.6 standard deviations). The kinematic properties of the excess events are consistent with top quark decay. We conclude that we have observed the top quark and measure its mass to be 199~+19_21 (stat.)+/- 22 (syst.)GeV/c**2 and its production cross section to be 6.4 +/- 2.2 pb.
Cross section refers to top quark mass equal 199. (+19, -21, +- 22) GeV.
With a data sample containing 1.1×105 J/ψ→μ+μ− decays reconstructed with 16 MeV/c2 rms mass resolution, we have measured the differential cross sections versus Feynman-x, rapidity, and pT for the production of J/ψ and ψ’ in 800 GeV/c p-Au collisions. Our results are compared with leading-order QCD predictions and with previous measurements. While the shapes of the cross sections are in qualitative agreement with QCD predictions, the magnitudes disagree by factors of 7 (J/ψ) and 25 (ψ’). Assuming an appropriate form for the differential cross sections in regions not measured we derive a total J/ψ production cross section σ(p+N→J/ψ+X)=442±2±88 nb/nucleon and a (model-dependent) total ψ’ cross secton σ(p+N→ψ’+X)=75±5±22 nb/nucleon. For J/ψ produced at central rapidity, dσ(p+N→J/ψ+X)/dy‖y=0=230±5±46 nb/nucleon.
Extrapolated measured total cross sections.
J/PSI cross section at central rapidity.
No description provided.
HERE 'PRODUCTION FRACTION' IS PROBABILITY(BQ --> B-BARYON)*BR(B-BARYON --> XI- LEPTON- X). 'LEPTON' IS E OR MU.
No description provided.
The decay τ−→π−−+vτ has been studied using data collected with the OPAL detector at LEP during 1992 and 1993. The hadronic structure functions for this decay are measured model independently assuming G-parity invariance and neglecting scalar currents. Simultaneously the parity violating asymmetry parameter is determined to be\(\gamma VA = 1.08 _{ - 0.41- 0.25}^{ + 0.46+ 0.14} \), consistent with the Standard Model prediction of γVA=1 for left-handed tau neutrinos. Models of Kühn and Santamaria and of Isgur et al. are used to fit distributions of the invariant 3π mass as well as 2π mass projections of the Dalitz plot. The model dependent mass and width of thea1 resonance are measured to be\(m_{a_1 }= 1.266 \pm 0.014_{ - 0.002}^{ + 0.012} \) GeV and\(\Gamma _{a_1 }= 0.610 \pm 0.049_{ - 0.019}^{ + 0.053} \) GeV for the Kühn and Santamaria model and\(m_{a_1 }= 1.202 \pm 0.009_{ - 0.001}^{ + 0.009} \) GeV and\(\Gamma _{a_1 }= 0.422 \pm 0.023_{ - 0.004}^{ + 0.033} \) GeV for the Isgur et al. model. The model dependent values obtained for the parity violating asymmetry parameter are γVA=0.87±0.27−0.06+0.05 for the Kühn and Santamaria model and γVA=1.10±0.31−0.14+0.13 for the Isgur et al. model. Within the Isgur et al. model the ratio of theS-andD-wave amplitudes is measured to beD/S=−0.09±0.03±0.01.
See paper for definition of four weak decay formfactors : wa, wc, wd, we. For TAU+-.
Here ASYM is parity violating asymmetry parameter gamma_VA = 2g_v*g_A/(g_v **2+g_A**2) (see paper).
The nuclear dependence for 800 GeV/c proton production of J/ψ’s has been measured near xF=0. $J/ psi—’s produced from beryllium, carbon, and tungsten targets were detected with the Fermilab E789 pair spectrometer. These data extend the results from E772 down to the range xF=-0.1 to 0.1 and indicate a gradually increasing suppression as xF falls below zero.
.
.
.
None
THETA is the angle between hadron and jet's axis. CONST is the parameter used in jet's definition (see text).
CONST is the parameter used in jet's definition (see text).
CONST is the parameter used in jet's definition (see text).
From 1.4 million hadronic Z decays collected by the ALEPH detector at LEP, an enriched sample of Z → cc̄ events is extracted by requiring the presence of a high momentum D ∗± . The charm quark forward-backward charge asymmetry at the Z pole is measured to be A FB 0. c = (8.0 ± 2.4) % corresponding to an effective electroweak mixing angle of sin 2 θ W eff = 0.2302 ± 0.0054.
Value of SIN2TW(eff) from CQ-quark asymmetries.
No description provided.
The fragmentation function for the process e+e−→h+X, whereh represents a hadron, may be decomposed into transverse, longitudinal and asymmetric contributions by analysis of the distribution of polar production angles. A number of new tests of QCD have been proposed using these fragmentation functions, but so far no data have been published on the separate components. We have performed such a separation using data on charged particles from hadronic Z0 decays atOpal, and have compared the results with the predictions of QCD. By integrating the fragmentation functions, we determine the average charged particle multiplicity to be\(\overline {n_{ch} }= 21.05 \pm 0.20\). The longitudinal to total cross-section ratio is determined to be σL/σtot=0.057±0.005. From the longitudinal fragmentation function we are able to extract the gluon fragmentation function. The connection between the asymmetry fragmentation function and electroweak asymmetrics is discussed.
Transverse component of the fragmentation function.
Longitudinal component of the fragmentation function.
Asymmetry component of the fragmentation function.
We have measured the multiplicity of charm quark pairs arising from gluon splitting in a sample of about 3.5 million hadronic Z 0 decays. By selecting a 3-jet event topology and tagging charmed hadrons in the lowest energy jet using leptons, we established a signature of heavy quark pair production from gluons. The average number of gluons splitting into a c c pair per hadronic event was measured to be n g→c c =(2.27±0.28±0.41) × 10 −2 .
Axis error includes +- 8.4/8.4 contribution (Total generator error for the electron channel due to the uncertainties in parameters of Peterson model of fragmentation, LAMBDA_QCD, ALPHA_S, Lund fragmentation parameters and lepton decay model).