New measurements are reported of total cross sections for π ± , K ± , p and p on protons and deuterons at 11 momenta between 23 and 280 GeV/ c .
No description provided.
No description provided.
No description provided.
The logarithmic slope of the differentical cross section for K ± p elastic scattering at 10 and 14 GeV, and for π ± p and p ± p at 10GeV has been measured. Rich structure is observed in the forward slope for all processes, which is well accounted for by the properties of a peripheral exchange amplitude for the nonexotic reactions, and by a peripheral component of the diffractive amplitude as clearly seen in the exotic processes, K ± p and pp.
GRAPH OF D(SIG)/DT.
SLOPE AS A FUNCTION OF T.
Differential cross sections in the t -range between 0.02 and 1.5 GeV 2 have been measured for the elastic scattering of particles and antiparticles on protons at 6.4, 10.4 and 14 GeV for K ± p and 10.4 GeV for π ± p and p ± p . Large statistics have been achieved and systematic uncertainties have been minimized. The relative systematic uncertainty between particle and antiparticle data is less than 0.5%. Accurate measurements of the position of the first crossover between particle and antiparticle differential cross sections have been performed. As the energy increases from 6.4 to 14 GeV the K ± p crossover moves to smaller values by 0.010 GeV 2 with a statistical error of 0.006 GeV 2 and a systematic uncertainty of 0.005 GeV 2 . The crossover positions at 10.4 GeV for π ± , K ± and p ± scale approximately with the interaction radii.
CROSSOVER POSITION IS -T = 0.209 +- 0.004 (DSYS = 0.003) GEV**2.
CROSSOVER POSITION IS -T = 0.209 +- 0.004 (DSYS = 0.003) GEV**2. SMALL ANGLE CROSS SECTIONS IN SMALLER T-BINS.
CROSSOVER POSITION IS -T = 0.211 +- 0.004 (DSYS = 0.0025) GEV**2.
The differential cross section for K ± p elastic scattering has been measured in the very low t region (0.003 < t < 0.2 GeV 2 ) in a wire chamber spectrometer experiment at 10.4 and 14 GeV/ c . The interference effect observed between the Coulomb and the nuclear interaction has been used to determine α, the ratio of real to imaginary part of the forward scattering amplitude. At 10.4 GeV/ c we measure α (K + p) = −0.21 ± 0.06 and α (K − p = 0.08 ± 0.04, and at 14 GeV/ c , α (K + p) = − 0.13 ± 0.03 and α (K − p) = 0.000 ± 0.04 in agreeement with the predictions of dispersion theory calculation.
No description provided.
None
No description provided.
No description provided.
No description provided.
We have observed the production of high-mass I=32 baryon resonances in π+p interactions at 13 GeV/c. The most prominent of these is found to be the F37 Δ(1950). It is produced by one-pion exchange and the data are well described by on-shell π+p phase shifts. Decays into pπ+ and pπ+π0 are observed and the Δ(1950) is found to have a mass 1.880 ± 0.010 GeV and width of 0.180 ± 0.030 GeV with a production cross section of 43 ± 4 μb.
RESONANCE BACKGROUNDS SUBTRACTED.
The results of a wire chamber spectrometer experiment studying K ∗ (890) production in the reaction K − p→ K − π + n at 13 GeV are presented. Strong forward structure is observed for | t |< m 2 π in the s -channel density matrix elements and differential cross section. These features are similar to those observed in π − p→ϱ 0 n data and are characteristics of π exchange. In contrast in the intermediate, | t | ∼ 0.2 GeV 2 , and large momentum transfer regions K ∗ (890) production is demonstrated by the natural parity ϱ−A 2 exchange contribution.
No description provided.
The differential cross section for π±, K±, and p± on hydrogen have been measured in the range 0.07<−t<1.6 (GeV/c)2. The dependence on momentum, momentum, transfer, and particle type are discussed.
No description provided.
The elastic differential cross section for pp scattering has been measured up to a momentum transfer of ‖ t ‖ = 3(GeV/ c ) 2 at 100 GeV/c and 200 GeV/c incident momenta. The 200 GeV/ c measurements shows a diffractive like dip at ‖ t ‖ = 1.5 GeV/ c while no such dip is seen in the 100 GeV/ c data.
No description provided.
Measurements of the cross section for the reaction p+p→π0+anything have been completed. The data cover a range of incident proton energies 50-400 GeV, π0 transverse momenta 0.3-4 GeV/c, and laboratory angles 30-275 mrad. The experiment was performed using the internal proton beam at the Fermi National Accelerator Laboratory. A lead-glass counter was used to detect photons from the decay of π0's produced by collisions in thin targets of hydrogen or carbon. Tables of the measured cross sections are presented.
No description provided.
No description provided.
No description provided.