We measure an inclusive branching fraction of (13.9 ± 2.0−2.2+1.9)% for the decay τ−→ντπ−π0+nh0(n>~1), where h0 is a π0 or an η. The data sample, obtained with the time-projection-chamber detector facility at the SLAC e+e− storage ring PEP, corresponds to an integrated luminosity of 72 pb−1 at 29 GeV center-of-mass energy. The measured branching fraction is somewhat greater than the theoretical prediction and, with errors taken into account, could resolve the present difference between the inclusive and the sum of the exclusive τ± branching fractions into one charged prong.
No description provided.
No description provided.
We report on the first search with virtual photon-photon collisions for narrow, neutral resonances with even C parity in the mass range 4.5<W<19 GeV. The data were obtained via the process e+e−→e+e−γ*γ*→e e−+R with both the scattered e+ and e− detected. We find upper limits (95% confidence level) for the partial decay width of a resonance into two photons, ranging from 50 keV at W=4.5 GeV to 10 MeV at W=19 GeV. These limits constrain theoretical models involving neutral composite bosons.
No description provided.
Pairs of τ leptons produced at s=3.77 GeV have been studied in eμ, ee, and μμ final states. The leptonic branching ratios have been measured to be B(τ→eνν)=(18.2±0.7±0.5)% and B(τ→μνν)=(18.0±1.0±0.6)%. Limits have been set for the two-body decays τ→eG and τ→μG, where G is a light Goldstone boson.
No description provided.
No description provided.
No description provided.
We have studied at CM energies of 14, 22 and 30–36.7 GeV e + e − annihilation events in which the hadronic final state contains both a proton and an antiproton in the momentum range 1.0 < p < GeV/ c . We find that such pairs are produced predominantly in the same jet and conclude that baryon-antibaryon production is dominated by a mechanism involving local compensation of baryon number.
BACKGROUND SUBTRACTED DATA.
BACKGROUND SUBTRACTED DATA.
D ∗± production via e + e − →D ∗± X has been measured at an average CM energy of 34.4 GeV. The D ∗± energy spectrum is hard, with a maximum near χ = 0.6. The size of the D ∗ cross section, R D ∗ = σ( e + e − → D ∗ X ) σ μμ = 2.50 ± 0.64 ± 0.88 (assuming R D ∗0 = R D ∗+ ) indicates that a large fraction of charm quark production yields D ∗ mesons. The D ∗± angular distribution exhibits a forward—backward asymmetry, A = −0.28 ± 0.13. This is consistent with that expected in the standard theory for weak neutral currents and leads to | g A c | = 0.89 ± 0.44 for the axial vector coupling of the charm quark.
ASSUMES EQUAL RATES FOR CHARGED AND NEUTRAL D*'S. ONLY CHARGED ARE DETECTED.
DATA PEAKS AT X=0.6 TO 0.8.
ASYMMETRY MEASUREMENT. THETA IS THE ANGLE BETWEEN THE E- AND THE D*.
We present results of a hybrid-bubble-chamber experiment examining the reaction π+p→π+pK+K− at an incident momentum of 11.46 GeV/c. The total cross section for this channel is determined to be 87.2±6.4 μb. A partial-wave analysis of the K+π+K− system reveals no unambiguous evidence of resonant activity, although mass enhancements are noted in the JP=0− κ¯K+ (S wave), JP=2− fπ (S wave), and JP=2−, K¯*0(892)K+ (P wave). This is the first published report of the relative phases of the waves seen in this reaction. We comment on the influence this channel may have on A1 and A3 production.
NOTE ERROR IN ABSTRACT IS +- 6.4 BUT TEXT QUOTES +- 9.3. FIGURE LOOKS CLOSER TO +- 6.4.
No description provided.
No description provided.