Electroproduction of the omega meson was investigated in the p(e,e'p)omega reaction. The measurement was performed at a 4-momentum transfer Q2 ~ 0.5 GeV2. Angular distributions of the virtual photon-proton center-of-momentum cross sections have been extracted over the full angular range. These distributions exhibit a strong enhancement over t-channel parity exchange processes in the backward direction. According to a newly developed electroproduction model, this enhancement provides significant evidence of resonance formation in the gamma* p -> omega p reaction channel.
Differential cross section for an average W of 1.75 GeV.
Differential cross section for an average W of 1.79 GeV.
We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 $<$ $Q^2$ $<$ 5.5 $(\rm GeV/c)^2$. These measurements represent a significant contribution to the world's cross section data set in the $Q^2$ range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab.
Measured values of the electron-proton elastic cross section for beam energy 1.148 GeV.
Measured values of the electron-proton elastic cross section for beam energy 1.882 GeV.
Measured values of the electron-proton elastic cross section for beam energy 2.235 GeV.
The 1H(e,e′K+)Λ reaction was studied as a function of the squared four-momentum transfer, Q2, and the virtual photon polarization, ɛ. For each of four Q2 settings, 0.52, 0.75, 1.00, and 2.00 (GeV/c)2, the longitudinal and transverse virtual photon cross sections were extracted in measurements at three virtual photon polarizations. The Q2 dependence of the σL/σT ratio differs significantly from current theoretical predictions. This, combined with the precision of the measurement, implies a need for revision of existing calculations.
The systematic and statistical errors are added in quadrature. OMEGA is the solid angle of K+ in CMS.
The total and the differential cross sections for the reaction e + e − → γγ ( γ ) have been measured with the DELPHI detector at LEP using an integrated luminosity of 36.9 pb −1 . The results agree with the QED predictions and consequently there is no evidence for non-standard channels with the same experimental signature. The lower limits obtained on the QED cutoff parameters are Λ + > 143 GeV and Λ − > 120 GeV, and the lower bound on the mass of an excited electron with an effective coupling constant λ γ = 1 is 132 GeV/ c 2 . Upper limits on the branching ratios for the decays Z 0 → γγ , Z 0 → π 0 γ , Z 0 → ηγ and Z 0 → γγγ have been determined to be 5.5 × 10 −5 , 5.5 × 10 −5 , 8.0 × 10 −5 , and 1.7 × 10 −5 respectively. All the limits are at the 95% confidence level.
1990 energies are 88.223, 89.222, 90.217, 91.217, 92.209, 93.208 and 94.202 GeV.. 1991 energies are 88.465, 89.460, 90.208, 91.225, 91.954, 92.953, and 93.703 GeV.. 1992 energy is 91.278 GeV.
Average of all data.
No description provided.
Measurements of the forward-angle differential cross section for elastic electron-proton scattering were made in the range of momentum transfer from Q2=2.9 to 31.3 (GeV/c)2 using an electron beam at the Stanford Linear Accelerator Center. The data span six orders of magnitude in cross section. Combinded statistical and systematic uncertainties in the cross section measurements ranged from 3.6% at low Q2 to 19% at high Q2. These data have been used to extract the proton magnetic form factor GMp(Q2) and Dirac form factor F1p(Q2) by using form factor scaling. The logarithmic falloff of Q4F1p expected from leading twist predictions of perturbative quantum chromodynamics is consistent with the new data at high Q2. Some nonperturbative and hybrid calculations also agree with our results.
No description provided.
Formfactor scaling assumes (Ge=Gm/mu).
The total and differential cross-sections for the reaction e + e − → γγ ( γ ) are measured at centre of mass energies around 91 GeV using an integrated luminosity of 4.7 pb −1 . The aggreement with QED prediction is good. Consequently there is no evidence for non-standard channels which would have the same experimental signature. The lower limits on the QED cuttoff parameters are Λ + > 113 GeV and Λ − > 95 GeV. An upper limit on the effective coupling between a possible excited electron and the gamma is derived. At 95% confidence level the branching ratios for Z 0 decay into π 0 γ, ηψ and γγγ are below 1.5 × 10 −4 , 2.8 × 10 −4 and 1.4 × 10 −4 respectively.
Radiative effects are subtracted.
Radiative effects subtracted.
The cross section of the pure QED process e + e − → γγ has been measured using data accumulated during the 1989 and 1990 scans of the Z 0 resonance at LEP. Both the energy dependence and the angular distribution are in good agreement with the QED prediction. Upper limits on the branching ratios of Z 0 → γγ , Z 0 → π 0 γ and Z 0 → ηγ have been set at 1.4×10 −4 , 1.4×10 −4 and 2.0×10 −4 respectively. Lower limits on the cutoff parameters of the modified electron propagator have been found to be Λ + > 117 GeV and Λ − > 110 GeV. The reaction e + e − → γγγ has also been studied and was found to be consistent with the QED prediction. An upper limit on the branching ratio of Z 0 → γγγ has been set at 6.6 × 10 −5 . All the limits are given at 95% confidence level.
No description provided.
No description provided.
No description provided.
The pure QED reaction e + e − → γγ has been studied at centre of mass energies around the mass of the Z 0 boson using data recorded by the OPAL detector at LEP. The results are in good agreement with the QED prediction. Lower limits on the cutoff parameters of the modified electron propagator are found to be Λ + >89 GeV and Λ. The lower limit on the mass of an excited electron is 82 GeV assuming the coupling constant λ =1. Upper limits on the branching ratios of Z 0 → γγ , Z 0 → π 0 γ and Z 0 → ηγ are set at 3.7×10 −4 , 3.9×10 −4 and 5.8×10 −4 respectively. Two events from the reaction e + e − → γγγ have been observed, consistent with the QED prediction. An upper limit on the branching ratio of Z 0 → γγγ is set at 2.8×10 −4 . All the limits are given at 95% confidence level.
No description provided.
Data read from graph.
We have measured dijet angular distributions at √s =1.8 TeV with the Collider Detector at Fermilab and the Tevatron p¯p Collider and find agreement with leading-order QCD. By comparing the distribution for the highest dijet invariant masses with the prediction of a model of quark compositeness, we set a lower limit on the associated scale parameter Λc at 330 GeV (95% C.L.).
Numerical values read from figure in preprint.
We have performed absolute measurements of the differential cross section for elastic e−p scattering in the range of momentum transfer from Q2=2.9 to 31.3 (GeV/c)2. Combined statistical and systematic uncertainties in the cross-section measurements ranged from 3% at low Q2 to 19% at high Q2. These data have been used to extract the proton magnetic form factor GMp(Q2). The results show a smooth decrease of Q4GMp with momentum transfer above Q2=10 (GeV/c)2. These results are compared with recent predictions of perturbative QCD.
No description provided.
No description provided.
No description provided.