The reaction π − p → φφ n has been isolated at 16 GeV/ c and its cross section determined to be 40 ± 10 nb. The φφ mass spectrum shows a threshold enhancement between 2.1 and 2.5 GeV. A successful description of the angular content of the φφ system requires two interferingss J P = 2 + states.
No description provided.
SLOPE OF DIFFERENTIAL TP(P=3,P=2) DISTRIBUTION.
Evidence for the backward production of the B(1235) meson in the final state π+p→pfπ+ω at 11.46 GeV/c with σ(|u′|<1.5 GeV2)=1.28±0.26 μb is presented. When nucleon exchange is assumed to dominate, estimates for the SU(3) mixing parameter FD as well as the B coupling to the nucleon-antinucleon are given. Some indication of a narrow enhancement at M(π+ω)≃1.03 GeV/c2 is seen, but confirmation of this as a resonant state is not yet possible.
No description provided.
No description provided.
Elastic ω-meson photoproduction on protons has been measured from 46 to 180 GeV. The cross section is approximately constant with photon energy and averages 1.10 ± 0.08 μb. The t dependence of the differential cross section is consistent with A exp(bt), where b=8.4±0.7 GeV−2. The photon-omega coupling constant, obtained from a normalization of hadron elastic-scattering cross sections to the photoproduction data of this experiment (with use of vector-meson dominance and an additive quark model), is γω24π=5.4±0.4.
THE QUOTED STATISTICAL ERRORS INCLUDE THE UNCERTAINTY IN THE CORRECTION FOR INELASTIC EVENTS. AVERAGE CROSS SECTION IS 1.10 +- 0.08 MUB.
EXPONENTIAL FIT TO DIFFERENTIAL CROSS SECTION.
No description provided.
Measurements of π±p backward elastic scattering have been made for incident pion momenta between 30 and 90 GeV/c and for 0<−u<0.5 (GeV/c)2. The momentum dependence of the cross sections is of a form expected from a simple Regge model, and the u dependence of the cross sections is similar to that observed at lower momenta.
No description provided.
No description provided.
No description provided.
We have measured ρ0, ω (combined) and ϕ electroproduction over a range of virtual-photon four-momentum Q2 from 0.4 to 2.2 GeV2 and for photon energies ν from 2.7 to 8.6 GeV. We find that the slope of the t (momentum transfer) dependence of the ρ0 and ω forward peak decreases with increasing Q2 to less than half of the photoproduction slope.
The cross section for virtual photon are derived from E- P cross section bydividing on the virtual-photon flux factor.
In a study of the production mechanism of quasi-two-body final states at the five incident π+ momenta 2.95, 3.2, 3.5, 3.75, and 4.08 GeV/c, approximately 40 000 events with four outgoing charged particles were investigated. The cross sections for the processes π+p→N*++ρ, π+p→N*++ω, π+p→N*++η, and π+p→N*++f have been measured as a function of the pion energy. The differential cross sections and the decay density-matrix elements are discussed in terms of one-meson-exchange models [with absorption (OPEA) and with form factor (OPEW)] and Regge models. For the N*++ρ and the N*++ω reactions, the joint-decay matrix elements are calculated. The formation of N*(2850) in the direct channel is also investigated.
No description provided.
No description provided.
No description provided.
Differential cross sections have been measured for nucleon-isobar production and elastic scattering in p−p interactions from 6.2 to 29.7 GeVc in the laboratory angle range 8<θsc<265 mrad. N*' s at 1236, 1410, 1500, 1690, and 2190 MeV were observed. Computer fits to the mass spectra under varying assumptions of resonance and background shapes show that conclusions on t and s dependence are only slightly affected despite typical variations in absolute normalization of ± 35%. Logarithmic t slopes in the small- |t| range are ∼15 (GeVc)−2 for the N*(1410), ∼5 (GeVc)−2 for the N*'s at 1500, 1690, and 2190 MeV, and ∼9 (GeVc)−2 for elastic scattering. Also for the small- |t| data, cross sections for N*'s at 1410, 1500, 1690, and 2190 MeV and for elastic scattering vary only slightly with Pinc consistent with the dominance of Pomeranchuk exchange and with diffraction dissociation. A fit of N*(1690) total cross sections to the form σ∝P−n gives n=0.34±0.06, while for elastic scattering n=0.20±0.05. For the N*(1690) the effective Regge trajectory has the slope αeff′(0)=0.38±0.17. When compared with N* production in π−, K−, and p¯ beams these data also agree with approximate factorization of the Pomeranchuk trajectory. N*(1236) cross sections are consistent with other measurements at similar momenta. For −t>1 (GeVc)−2, elastic scattering cross sections decrease approximately as Pinc−2, and they and N*(1500)− and N*(1690)− production cross sections have t slopes consistent with 1.6 (GeVc)−2.
No description provided.
No description provided.
No description provided.
Angular distributions are presented for p¯−p elastic scattering at 8 and 16 GeV/c for |t|<1.3 (GeV/c)2. At both energies there is structure in the differential cross sections in the region 0.5<~|t|<~1.0 (GeV/c)2, similar to that observed at lower energies. The diffraction peak continues to expand with increasing incident momentum.
No description provided.
No description provided.
No description provided.