Polarization Measurements in pi+ p Elastic Scattering from 0.6-GeV/c to 2.65-GeV/c

Martin, J.F. ; Sleeman, J.C. ; Brown, Robert M. ; et al.
Nucl.Phys.B 89 (1975) 253-286, 1975.
Inspire Record 90870 DOI 10.17182/hepdata.6743

This paper presents the results of a counter experiment at the Rutherford Laboratory, in which the polarization parameter in π + p elastic scattering was measured. Data were taken at 64 incident pion momenta between 0.60 and 2.65 GeV/ c . The results are found to be in generally good agreement with those of other experiments, and have substantially higher precision at many momenta.

128 data tables match query

No description provided.

No description provided.

No description provided.

More…

Recent results on the polarization parameter in $\pi-p$ and $p-p$ elastic scattering from 6 to 12 GeV/c.

Borghini, M. ; Coignet, G. ; Dick, Louis ; et al.
(1967) 123-124, 1967.
Inspire Record 1371768 DOI 10.17182/hepdata.71256

We present the final results of a measurement of the polarization parameter P 0 in high-energy n~-p and p-p elastic scattering, performed using a target which contained polarized protons. Data were taken at beam momenta of 6.0, 8.0, 10.0 and 12.0 GeV/c for n-, and of 6.0, 10.0 and 12.0 GeV/c for n+ and p, in the interval of invariant four-momentum transfer squared-t from 0.1 to 0.75 (GeV/c)2.

10 data tables match query

No description provided.

No description provided.

No description provided.

More…

Measures of the differential effective sections $\pi ±p$ to 410 MeV and 490 MeV forwards

Banner, M. ; Detoeuf, J.F. ; Fayoux, M.L. ; et al.
Nuovo Cim.A 50 (1967) 431-448, 1967.
Inspire Record 1185325 DOI 10.17182/hepdata.896

Measurements of π±p elastic differential cross-sections have been performed in the forward direction, using a missing-mass spark chamber spectrometer. The films have been seanned by an automatic apparatus. A phase-shift analysis of the experimental data has been done, leading to three solutions. Various experiments are proposed in order to resolve the ambiguities.

4 data tables match query

No description provided.

No description provided.

No description provided.

More…

Hidden Strangeness in the Proton? Determination of the Real Part of the Isospin Even - Forward Scattering Amplitude of Pion Nucleon Scattering at 54.3-{MeV}

Wiedner, U. ; Goring, K. ; Jaki, J. ; et al.
Phys.Rev.D 40 (1989) 3568-3581, 1989.
Inspire Record 287810 DOI 10.17182/hepdata.23079

The contradiction of the σ term of pion-nucleon scattering as deduced from the Karlsruhe-Helsinki phase shifts with the smaller value calculated by the chiral perturbation theory of QCD is well known. In an effort to clarify the discrepancy we have determined the real part of the isospin-even forward-scattering amplitude of pion-nucleon scattering at a pion energy Tπ=54.3 MeV by measurement of the elastic scattering of positive and negative pions on protons in the Coulomb-nuclear interference region. The deduced value is in agreement with the prediction of the Karlsruhe-Helsinki phase-shift analysis for that energy. The resulting large value of the σ term may be interpreted as being due to the influence of s¯s sea pairs even at large distances (small Q2) as previously suggested by the European Muon Collaboration measurement of deep-inelastic scattering of polarized muons on polarized protons.

1 data table match query

No description provided.


Coulomb-Nuclear Interference in pi+- p and K+- p Elastic Scattering Below 3-GeV: Measurements, Real Parts and K+- p Dispersion Relations

Baillon, P. ; Bricman, C. ; Ferro-Luzzi, M. ; et al.
Nucl.Phys.B 105 (1976) 365-430, 1976.
Inspire Record 101037 DOI 10.17182/hepdata.13243

The differential cross sections for π + p elastic scattering at0.6, 1.0, 1.5, 2.0, GeV/ c for π - p at 1.0, 1.5, 2.0 GeV/ c , for K - p at 1.2, 1.8, 2.6 GeV/ c and for K - p at 0.9, 1.2, 1.4, 1.6, 1.8, 2.6 GeV/ c have been measured with an overall accuracy ofthe order of 1 to 2% in an electronics experiment over the angular region corresponding to momentum transfer t between 0.0005 and 0.10 GeV 2 . Making use of the interference effects between the Coulomb and the nuclear interaction, we have determined the magnitude and sign of the real part of the scattering amplitude near t = 0. The K ± p real parts have been used in a dispersion relation to derive the value of the KNΛ coupling constant.

20 data tables match query

'TABLE'. 'BIN'.

'TABLE'. 'BIN'.

'TABLE'. 'BIN'.

More…