Measurements of the differential production cross sections for a Z boson in association with jets in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 04 (2017) 022, 2017.
Inspire Record 1497519 DOI 10.17182/hepdata.128149

Cross sections for the production of a Z boson in association with jets in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 8 TeV are measured using a data sample collected by the CMS experiment at the LHC corresponding to 19.6 inverse femtobarns. Differential cross sections are presented as functions of up to three observables that describe the jet kinematics and the jet activity. Correlations between the azimuthal directions and the rapidities of the jets and the Z boson are studied in detail. The predictions of a number of multileg generators with leading or next-to-leading order accuracy are compared with the measurements. The comparison shows the importance of including multi-parton contributions in the matrix elements and the improvement in the predictions when next-to-leading order terms are included.

128 data tables

The cross section for Z($\rightarrow\ell\ell$) + jets production measured as a function of the exclusive jet multiplicity, $N_{\text{jets}}$, and breakdown of the relative uncertainty.

Bin-to-bin correlation in the the cross section for Z($\rightarrow\ell\ell$) + jets production measured as a function of the exclusive jet multiplicity, $N_{\text{jets}}$.

The cross section for Z($\rightarrow\ell\ell$) + jets production measured as a function of the 1$^\text{st}$ jet $p_{\text{T}}$, $p_{\text{T}}(\text{j}_1)$, and breakdown of the relative uncertainty.

More…

Version 2
Measurements of differential cross sections for associated production of a W boson and jets in proton-proton collisions at sqrt(s)=8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 95 (2017) 052002, 2017.
Inspire Record 1491953 DOI 10.17182/hepdata.76995

Differential cross sections for a W boson produced in association with jets are measured in a data sample of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the CMS detector and corresponding to an integrated luminosity of 19.6 inverse femtobarns. The W bosons are identified through their decay mode W to mu nu. The cross sections are reported as functions of jet multiplicity, transverse momenta, and the scalar sum of jet transverse momenta (HT) for different jet multiplicities. Distributions of the angular correlations between the jets and the muon are examined, as well as the average number of jets as a function of HT and as a function of angular variables. The measured differential cross sections are compared with tree-level and higher-order recent event generators, as well as next-to-leading-order and next-to-next-to-leading-order theoretical predictions. The agreement of the generators with the measurements builds confidence in their use for the simulation of W+jets background processes in searches for new physics at the LHC.

78 data tables

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 7.

The cross section measurement as a function of the exclusive jet multiplicity, for jet multiplicities of up to 7.

The cross section measurement as a function of the inclusive jet multiplicity, for jet multiplicities of up to 7.

More…

Measurement of the production cross section of the W boson in association with two b jets in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 77 (2017) 92, 2017.
Inspire Record 1484162 DOI 10.17182/hepdata.76543

The production cross section of a W boson in association with two b jets is measured using a sample of proton-proton collisions at sqrt(s) = 8 TeV collected by the CMS experiment at the CERN LHC. The data sample corresponds to an integrated luminosity of 19.8 inverse femtobarns. The W bosons are reconstructed via their leptonic decays, W to l nu, where l = mu or e. The fiducial region studied contains exactly one lepton with transverse momentum pt[l] > 30 GeV and pseudorapidity abs(eta[l]) < 2.1, with exactly two b jets with pt > 25 GeV and abs(eta) < 2.4 and no other jets with pt > 25 GeV and abs(eta) < 4.7. The cross section is measured to be sigma(pp to W (l nu)+ bb-bar) = 0.64 +/- 0.03 (stat) +/- 0.10 (syst) +/- 0.06 (theo) +/- 0.02 (lumi) pb, in agreement with standard model predictions.

1 data table

Wbb production cross section in pb.


Measurement of electroweak production of a W boson and two forward jets in proton-proton collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 11 (2016) 147, 2016.
Inspire Record 1477806 DOI 10.17182/hepdata.76993

A measurement is presented of the cross section for the electroweak production of a W boson in association with two jets in proton-proton collisions at a center-of-mass energy of 8 TeV. The data set was collected with the CMS detector and corresponds to an integrated luminosity of 19.3 inverse femtobarns. The measured fiducial cross section for W bosons decaying to electrons or muons and for pT(j1) > 60 GeV, pT(j2) > 50 GeV, |eta(j)| < 4.7, and m(jj) > 1000 GeV is 0.42 +/- 0.04 (stat) +/- 0.09 (syst) +/- 0.01 (lumi) pb. This result is consistent with the standard model leading-order prediction of 0.50 +/- 0.02 (scale) +/- 0.02 (PDF) pb obtained with MADGRAPH5_aMC@NLO 2.1 interfaced to PYTHIA 6.4. This is the first cross section measurement for this process.

1 data table

The measured values for the EW W(-->env, munv)+2-jets fiducial cross section.


Search for heavy resonances decaying to two Higgs bosons in final states containing four b quarks

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 371, 2016.
Inspire Record 1424833 DOI 10.17182/hepdata.73976

A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons (H) in proton-proton collisions collected by the CMS experiment at the LHC at sqrt(s) = 8 TeV. The data correspond to an integrated luminosity of 19.7 inverse femtobarns. The search considers HH resonances with masses between 1 and 3 TeV, having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and t t-bar events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95% confidence level for the product of the production cross section and branching fraction sigma(gg to X) B(X to HH to b b-bar b b-bar) range from 10 to 1.5 fb for the mass of X from 1.15 to 2.0 TeV, significantly extending previous searches. For a warped extra dimension theory with a mass scale Lambda[R] = 1 TeV, the data exclude radion scalar masses between 1.15 and 1.55 TeV.

7 data tables

Observed $m_\mathrm{jj}$ spectrum (black points) compared with a background estimate (black line), obtained in background only hypothesis, for HPHP category. The simulated radion resonances of $m_\mathrm{X} = 1.5$ and 2 TeV are also shown.

Observed $m_\mathrm{jj}$ spectrum (black points) compared with a background estimate (black line), obtained in background only hypothesis, for HPLP category. The simulated radion resonances of $m_\mathrm{X} = 1.5$ and 2 TeV are also shown.

Observed $m_\mathrm{jj}$ spectrum (black points) compared with a background estimate (black line), obtained in background only hypothesis, for LPHP category. The simulated radion resonances of $m_\mathrm{X} = 1.5$ and 2 TeV are also shown.

More…

Measurement of dijet azimuthal decorrelation in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 536, 2016.
Inspire Record 1421646 DOI 10.17182/hepdata.74207

A measurement of the decorrelation of azimuthal angles between the two jets with the largest transverse momenta is presented for seven regions of leading jet transverse momentum up to 2.2 TeV. The analysis is based on the proton-proton collision data collected with the CMS experiment at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 inverse femtobarns. The dijet azimuthal decorrelation is caused by the radiation of additional jets and probes the dynamics of multijet production. The results are compared to fixed-order predictions of perturbative quantum chromodynamics (QCD), and to simulations using Monte Carlo event generators that include parton showers, hadronization, and multiparton interactions. Event generators with only two outgoing high transverse momentum partons fail to describe the measurement, even when supplemented with next-to-leading-order QCD corrections and parton showers. Much better agreement is achieved when at least three outgoing partons are complemented through either next-to-leading-order predictions or parton showers. This observation emphasizes the need to improve predictions for multijet production.

7 data tables

Normalized dijet cross section differential in DeltPhi_{dijet} for 200<p_{T}^{max}<300 GeV region. The error bars on the data points include statistical and systematic uncertainties. The (sys) error is the total systematic error.

Normalized dijet cross section differential in DeltPhi_{dijet} for 300<p_{T}^{max}<400 GeV region. The error bars on the data points include statistical and systematic uncertainties. The (sys) error is the total systematic error.

Normalized dijet cross section differential in DeltPhi_{dijet} for 400<p_{T}^{max}<500 GeV region. The error bars on the data points include statistical and systematic uncertainties. The (sys) error is the total systematic error.

More…

Search for New Phenomena in Dijet Angular Distributions in Proton-Proton Collisions at $\sqrt{s} = 8$ TeV Measured with the ATLAS Detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.Lett. 114 (2015) 221802, 2015.
Inspire Record 1357594 DOI 10.17182/hepdata.68404

A search for new phenomena in LHC proton-proton collisions at a center-of-mass energy of $\sqrt{s}=8$ TeV was performed with the ATLAS detector using an integrated luminosity of 17.3 fb$^{-1}$. The angular distributions are studied in events with at least two jets; the highest dijet mass observed is 5.5 TeV. All angular distributions are consistent with the predictions of the Standard Model. In a benchmark model of quark contact interactions, a compositeness scale below 8.1 TeV in a destructive interference scenario and 12.0 TeV in a constructive interference scenario is excluded at 95 % CL; median expected limits are 8.9 TeV for the destructive interference scenario and 14.1 TeV for the constructive interference scenario.

7 data tables

mjj region 600 - 800 GeV. The observed systematic is the experimental uncertainty, while the SM prediction systematic is the theoretical uncertainty.

mjj region 800 - 1200 GeV. The observed systematic is the experimental uncertainty, while the SM prediction systematic is the theoretical uncertainty.

mjj region 1200 - 1600 GeV. The observed systematic is the experimental uncertainty, while the SM prediction systematic is the theoretical uncertainty.

More…

Search for low-scale gravity signatures in multi-jet final states with the ATLAS detector at $\sqrt{s} = 8$ TeV

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
JHEP 07 (2015) 032, 2015.
Inspire Record 1357199 DOI 10.17182/hepdata.67127

We search for evidence of physics beyond the Standard Model in the production of final states with multiple high transverse momentum jets, using 20.3 fb$^{-1}$ of proton-proton collision data recorded by the ATLAS detector at $\sqrt{s} = 8$ TeV. No excess of events beyond Standard Model expectations is observed, and upper limits on the visible cross-section for non-Standard Model production of multi-jet final states are set. Using a wide variety of models for black hole and string ball production and decay, the limit on the cross-section times acceptance is as low as 0.16 fb at the 95% CL for a minimum scalar sum of jet transverse momentum in the event of about 4.3 TeV. Using models for black hole and string ball production and decay, exclusion contours are determined as a function of the production mass threshold and the gravity scale. These limits can be interpreted in terms of lower-mass limits on black hole and string ball production that range from 4.6 to 6.2 TeV.

13 data tables

Number of data events (20.3 fb$^{-1}$), number of predicted events from the fit, statistical uncertainty on the fit, systematic uncertainty on the choice of control region, and on the choice of fit function versus inclusive $H_{\textrm{T}}^{\textrm{min}}$ lower bin edge for inclusive jet multiplicity $N_{\textrm{Jet}} \geq 3$. The total uncertainty is obtained by adding the three uncertainties linearly.

Number of data events (20.3 fb$^{-1}$), number of predicted events from the fit, statistical uncertainty on the fit, systematic uncertainty on the choice of control region, and on the choice of fit function versus inclusive $H_{\textrm{T}}^{\textrm{min}}$ lower bin edge for inclusive jet multiplicity $N_{\textrm{Jet}} \geq 4$. The total uncertainty is obtained by adding the three uncertainties linearly.

Number of data events (20.3 fb$^{-1}$), number of predicted events from the fit, statistical uncertainty on the fit, systematic uncertainty on the choice of control region, and on the choice of fit function versus inclusive $H_{\textrm{T}}^{\textrm{min}}$ lower bin edge for inclusive jet multiplicity $N_{\textrm{Jet}} \geq 5$. The total uncertainty is obtained by adding the three uncertainties linearly.

More…

Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Eur.Phys.J.C 75 (2015) 299, 2015.
Inspire Record 1343107 DOI 10.17182/hepdata.68783

Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb$^{-1}$ of $\sqrt{s}=8$ TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with $p_T > 120$ GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between $E_T^{miss} > 150$ GeV and $E_T^{miss} > 700$ GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with large extra spatial dimensions, pair production of weakly interacting dark matter candidates, and production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presented.

45 data tables

Distributions of the measured transverse mass distribution of the identified muon in the $W\mu\nu$+jets control region for the inclusive SR1 selection, compared to the background expectations. The latter include the global normalization factors extracted from the data. Where appropriate, the last bin of the distribution includes overflows.

Measured $E_{T}^{miss}$ distribution in the $W\mu\nu$+jets control region for the inclusive SR1 selection, compared to the background expectations. The latter include the global normalization factors extracted from the data. Where appropriate, the last bin of the distribution includes overflows.

Measured leading jet $p_{T}$ distribution in the $W\mu\nu$+jets control region for the inclusive SR1 selection, compared to the background expectations. The latter include the global normalization factors extracted from the data. Where appropriate, the last bin of the distribution includes overflows.

More…

Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at sqrt(s)=8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 91 (2015) 052009, 2015.
Inspire Record 1340084 DOI 10.17182/hepdata.66764

A search for resonances and quantum black holes is performed using the dijet mass spectra measured in proton-proton collisions at sqrt(s) = 8 TeV with the CMS detector at the LHC. The data set corresponds to an integrated luminosity of 19.7 inverse femtobarns. In a search for narrow resonances that couple to quark-quark, quark-gluon, or gluon-gluon pairs, model-independent upper limits, at 95% confidence level, are obtained on the production cross section of resonances, with masses above 1.2 TeV. When interpreted in the context of specific models the limits exclude: string resonances with masses below 5.0 TeV; excited quarks below 3.5 TeV; scalar diquarks below 4.7 TeV; W' bosons below 1.9 TeV or between 2.0 and 2.2 TeV; Z' bosons below 1.7 TeV; and Randall-Sundrum gravitons below 1.6 TeV. A separate search is conducted for narrow resonances that decay to final states including b quarks. The first exclusion limit is set for excited b quarks, with a lower mass limit between 1.2 and 1.6 TeV depending on their decay properties. Searches are also carried out for wide resonances, assuming for the first time width-to-mass ratios up to 30%, and for quantum black holes with a range of model parameters. The wide resonance search excludes axigluons and colorons with mass below 3.6 TeV, and color-octet scalars with mass below 2.5 TeV. Lower bounds between 5.0 and 6.3 TeV are set on the masses of quantum black holes.

10 data tables

Inclusive dijet mass spectrum from wide jets (points) compared to a fit (solid curve) and to predictions including detector simulation of multijet events and signal resonances. The predicted multijet shape (QCD MC) has been scaled to the data (see text). The vertical error bars are statistical only and the horizontal error bars are the bin widths. For comparison,the signal distributions for a W resonance of mass 1900 GeV and an excited quark of mass 3.6 TeV are shown. The bin-by-bin fit residuals scaled to the statistical uncertainty of the data , (data - fit)/$\sigma_{data}$, are shown at the bottom and compared with the expected signal contributions.

Observed 95% CL upper limits on $\sigma B A$ for narrow qq, qg, and gg resonances, from the inclusive analysis for signal masses between 1.2 and 5.5 TeV.

Observed 95% CL upper limits on $\sigma B A$ for narrow gg/bb, qq/bb, and bg resonances from the b-enriched analysis, for signal masses between 1.2 and 4.0 TeV. The upper limits are given for different ratios $f_{bb}$ for gg/bb and qq/bb resonances, and for 100% branching fraction into bg.

More…