Date

Observation of top-quark pair production in lead-lead collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.Lett. 134 (2025) 142301, 2025.
Inspire Record 2849226 DOI 10.17182/hepdata.156982

Top-quark pair production is observed in lead-lead (Pb+Pb) collisions at $\sqrt{s_\mathrm{NN}}=5.02$ TeV at the Large Hadron Collider with the ATLAS detector. The data sample was recorded in 2015 and 2018, amounting to an integrated luminosity of 1.9 nb$^{-1}$. Events with exactly one electron and one muon and at least two jets are selected. Top-quark pair production is measured with an observed (expected) significance of 5.0 (4.1) standard deviations. The measured top-quark pair production cross-section is $\sigma_{t\bar{t}} = 3.6\;^{+1.0}_{-0.9}\;\mathrm{(stat.)}\;^{+0.8}_{-0.5}\;\mathrm{(syst.)} ~\mathrm{\mu b}$, with a total relative uncertainty of 31%, and is consistent with theoretical predictions using a range of different nuclear parton distribution functions. The observation of this process consolidates the evidence of the existence of all quark flavors in the pre-equilibrium stage of the quark-gluon plasma at very high energy densities, similar to the conditions present in the early universe.

5 data tables

The figure shows the post-fit distribution of events as a function of the dilepton invariant mass ($m_{e\mu}$), in lead-lead (Pb+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV, with an integrated luminosity of 1.9 nb$^{-1}$. The data correspond to the SR1 (Signal Region 1 (SR\(_1\)):} Events with exactly one muon and one oppositely charged electron, a dilepton invariant mass \( m_{e\mu} \geq 30 \, \mathrm{GeV} \), at least two jets with \( p_T \geq 35 \, \mathrm{GeV} \), and a dilepton transverse momentum \( p_T^{e\mu} > 40 \, \mathrm{GeV} \). This region is expected to be signal-dominated) channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield.

The figure shows the post-fit distribution of events as a function of the dilepton invariant mass ($m_{e\mu}$), in lead-lead (Pb+Pb) collisions at a center-of-mass energy of $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV, with an integrated luminosity of 1.9 nb$^{-1}$. The data correspond to the SR2 (Signal Region 2 (SR\(_2\)):} Events meeting the same criteria as SR\(_1\), but with a dilepton transverse momentum \( p_T^{e\mu} \leq 40 \, \mathrm{GeV} \). This region includes events with a lower \( p_T^{e\mu} \) and has a larger background contribution) channel in a pre-fit configuration. The stacked histograms represent different processes contributing to the event yield.

The impact of systematic uncertainties on the fitted signal-strength parameter $\hat{\mu}$ for the combined fit of all channels. Only the 10 most significant systematic uncertainties are shown and listed in decreasing order of their impact on $\mu$ on the $y$-axis. The empty (filled) blue/cyan boxes correspond to the pre-fit (post-fit) impact on $\mu$, referring to the upper $x$-axis. The impact of each systematic uncertainty, $\Delta \mu$, is calculated by comparing the nominal best-fit value of $\mu$ with the result of the fit when fixing the corresponding nuisance parameter $\theta$ to its best-fit value $\hat{\theta}$ shifted by its pre-fit (post-fit) uncertainties $\hat{\theta} \pm \Delta \theta(\hat{\theta} \pm \Delta \hat{\theta})$. The black points, which refer to the lower $x$-axis, show the pulls of the fitted nuisance parameters, i.e., the deviations of the fitted parameters $\hat{\theta}$ from their nominal values $\theta_0$, normalized to their nominal uncertainties $\Delta \theta$. The black lines show the post-fit uncertainties of the nuisance parameters, relative to their nominal uncertainties, which are indicated by the dashed lines.

More…

Search for the non-resonant production of Higgs boson pairs via gluon fusion and vector-boson fusion in the $b\bar{b}\tau^+\tau^-$ final state in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Aakvaag, Erlend ; Abbott, Braden Keim ; et al.
Phys.Rev.D 110 (2024) 032012, 2024.
Inspire Record 2779337 DOI 10.17182/hepdata.151276

A search for the non-resonant production of Higgs boson pairs in the $HH\rightarrow b\bar{b}\tau^+\tau^-$ channel is performed using 140 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $13$ TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The analysis strategy is optimised to probe anomalous values of the Higgs boson self-coupling modifier $\kappa_\lambda$ and of the quartic $HHVV$ ($V = W,Z$) coupling modifier $\kappa_{2V}$. No significant excess above the expected background from Standard Model processes is observed. An observed (expected) upper limit $\mu_{HH}<5.9$$(3.3)$ is set at 95% confidence-level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The coupling modifiers are constrained to an observed (expected) 95% confidence interval of $-3.1 < \kappa_\lambda < 9.0$ ($-2.5 < \kappa_\lambda < 9.3$) and $-0.5 < \kappa_{2V} < 2.7$ ($-0.2 < \kappa_{2V} < 2.4$), assuming all other Higgs boson couplings are fixed to the Standard Model prediction. The results are also interpreted in the context of effective field theories via constraints on anomalous Higgs boson couplings and Higgs boson pair production cross-sections assuming different kinematic benchmark scenarios.

32 data tables

Observed (filled circles) and expected (open circles) 95% CL upper limits on $\mu_{HH}$ from the fit of each individual channel and the combined fit in the background-only ($\mu_{HH} = 0$) hypothesis. The dashed lines indicate the expected 95% CL upper limits on $\mu_{HH}$ in the SM hypothesis ($\mu_{HH} = 1$). The inner and outer bands indicate the $\pm 1\sigma$ and $\pm 2\sigma$ variations, respectively, on the expected limit with respect to the background-only hypothesis due to statistical and systematic uncertainties.

Observed and expected 95% CL upper limits on $\mu_{HH}$, $\mu_{ggF}$ and $\mu_{VBF}$ from the individual SR likelihood fits as well as the combined results. The $\mu_{ggF}$ and $\mu_{VBF}$ limits are quoted both from the results of the simultaneous fit of both signal strengths (central column), and from independent fits for the individual production modes, assuming the other to be as predicted by the SM. The uncertainties quoted on the combined expected upper limits correspond to the 1σ uncertainty band.

Observed (solid line) value of $-2\ln\Lambda$ as a function of $\kappa_{\lambda}$ for the combined fit, when all other coupling modifiers are fixed to their SM predictions.

More…

Search for pair-produced higgsinos decaying via Higgs or $Z$ bosons to final states containing a pair of photons and a pair of $b$-jets with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 856 (2024) 138938, 2024.
Inspire Record 2773395 DOI 10.17182/hepdata.144072

A search is presented for the pair production of higgsinos $\tilde{\chi}$ in gauge-mediated supersymmetry models, where the lightest neutralinos $\tilde{\chi}_1^0$ decay into a light gravitino $\tilde{G}$ in association with either a Higgs $h$ or a $Z$ boson. The search is performed with the ATLAS detector at the Large Hadron Collider using 139 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV. It targets final states in which a Higgs boson decays into a photon pair, while the other Higgs or $Z$ boson decays into a $b\bar{b}$ pair, with missing transverse momentum associated with the two gravitinos. Search regions dependent on the amount of missing transverse momentum are defined by the requirements that the diphoton mass should be consistent with the mass of the Higgs boson, and the $b\bar{b}$ mass with the mass of the Higgs or $Z$ boson. The main backgrounds are estimated with data-driven methods using the sidebands of the diphoton mass distribution. No excesses beyond Standard Model expectations are observed and higgsinos with masses up to 320 GeV are excluded, assuming a branching fraction of 100% for $\tilde{\chi}_1^0\rightarrow h\tilde{G}$. This analysis excludes higgsinos with masses of 130 GeV for branching fractions to $h\tilde{G}$ as low as 36%, thus providing complementarity to previous ATLAS searches in final states with multiple leptons or multiple $b$-jets, targeting different decays of the electroweak bosons.

25 data tables

<b>- - - - - - - - Overview of HEPData Record - - - - - - - -</b> <b>Histograms:</b><ul> <li><a href=?table=Distribution1>Figure 3a: $m_{\gamma\gamma}$ Distribution in VR1</a> <li><a href=?table=Distribution2>Figure 3b: $E_{\mathrm{T}}^{\mathrm{miss}}$ Distribution in VR1</a> <li><a href=?table=Distribution3>Figure 3c: $m_{\gamma\gamma}$ Distribution in VR2</a> <li><a href=?table=Distribution4>Figure 3d: $E_{\mathrm{T}}^{\mathrm{miss}}$ Distribution in VR2</a> <li><a href=?table=Distribution5>Figure 4a: N-1 $m_{\gamma\gamma}$ Distribution for SR1h</a> <li><a href=?table=Distribution6>Figure 4b: N-1 $m_{\gamma\gamma}$ Distribution for SR1Z</a> <li><a href=?table=Distribution7>Figure 4c: N-1 $m_{\gamma\gamma}$ Distribution for SR2</a> <li><a href=?table=Distribution8>Auxiliary Figure 1: Signal and Validation Region Yields</a> </ul> <b>Tables:</b><ul> <li><a href=?table=YieldsTable1>Table 3: Signal Region Yields & Model-independent Limits</a> <li><a href=?table=Cutflow1>Auxiliary Table 1: Benchmark Signal Cutflows</a> </ul> <b>Cross section limits:</b><ul> <li><a href=?table=X-sectionU.L.1>Figure 5: 1D Cross-section Limits</a> <li><a href=?table=X-sectionU.L.2>Auxiliary Figure 3: 2D Cross-section Limits</a> </ul> <b>2D CL limits:</b><ul> <li><a href=?table=Exclusioncontour1>Figure 6: Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour2>Figure 6: $+1\sigma$ Variation for Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour3>Figure 6: $-1\sigma$ Variation for Expected Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour4>Figure 6: Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour5>Figure 6: $+1\sigma$ Variation for Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> <li><a href=?table=Exclusioncontour6>Figure 6: $-1\sigma$ Variation for Observed Limit on $\mathrm{BF}(\tilde{\chi}_1^0\rightarrow h\tilde{G})$</a> </ul> <b>2D Acceptance and Efficiency maps:</b><ul> <li><a href=?table=Acceptance1>Auxiliary Figure 4a: Acceptances SR1h</a> <li><a href=?table=Acceptance2>Auxiliary Figure 4b: Acceptances SR1Z</a> <li><a href=?table=Acceptance3>Auxiliary Figure 4c: Acceptances SR2</a> <li><a href=?table=Efficiency1>Auxiliary Figure 5a: Efficiencies SR1h</a> <li><a href=?table=Efficiency2>Auxiliary Figure 5b: Efficiencies SR1Z</a> <li><a href=?table=Efficiency3>Auxiliary Figure 5c: Efficiencies SR2</a> </ul>

Distribution of the diphoton invariant mass in validation region VR1. The solid histograms are stacked to show the SM expectations after the 2&times;2D background estimation technique is applied. Background and signal predictions are normalised to the luminosity. The background category "h (other)" includes events originating from VBF, Vh, ggF, thq, thW and bb&#772;h, all subdominant in this signature. Statistical and systematic uncertainties are indicated by the shaded area. The lower panel of each plot shows the ratio of the data to the SM prediction for the respective bin. The first and last bins include the underflows and overflows respectively.

Distribution of the missing transverse momentum in validation region VR1. The solid histograms are stacked to show the SM expectations after the 2&times;2D background estimation technique is applied. Background and signal predictions are normalised to the luminosity. The background category "h (other)" includes events originating from VBF, Vh, ggF, thq, thW and bb&#772;h, all subdominant in this signature. Statistical and systematic uncertainties are indicated by the shaded area. The lower panel of each plot shows the ratio of the data to the SM prediction for the respective bin. The first and last bins include the underflows and overflows respectively.

More…

Search for high-mass resonances in final states with a $\tau$-lepton and missing transverse momentum with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Phys.Rev.D 109 (2024) 112008, 2024.
Inspire Record 2762382 DOI 10.17182/hepdata.146026

A search for high-mass resonances decaying into a $\tau$-lepton and a neutrino using proton-proton collisions at a center-of-mass energy of $\sqrt{s}=13$ TeV is presented. The full Run 2 data sample corresponding to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS experiment in the years 2015-2018 is analyzed. The $\tau$-lepton is reconstructed in its hadronic decay modes and the total transverse momentum carried out by neutrinos is inferred from the reconstructed missing transverse momentum. The search for new physics is performed on the transverse mass between the $\tau$-lepton and the missing transverse momentum. No excess of events above the Standard Model expectation is observed and upper exclusion limits are set on the $W^\prime\to \tau \nu$ production cross-section. Heavy $W^\prime$ vector bosons with masses up to 5.0 TeV are excluded at 95% confidence level, assuming that they have the same couplings as the Standard Model $W$ boson. For non-universal couplings, $W^\prime$ bosons are excluded for masses less than 3.5-5.0 TeV, depending on the model parameters. In addition, model-independent limits on the visible cross-section times branching ratio are determined as a function of the lower threshold on the transverse mass of the $\tau$-lepton and missing transverse momentum.

8 data tables

Observed and predicted $m_{\rm T}$ distributions including SSM and NU (cot$\theta$ = 5.5) $W^{\prime}$ signals with masses of 4 TeV. Please note that in the paper figure the bin content is divided by the bin width, but this is not done in the HepData table.

Observed and expected 95% CL upper limits on cross section times $\tau\nu$ branching fraction for $W^{\prime}_{\rm SSM}$.

Regions of the non-universal parameter space excluded at 95% CL.

More…

Combination of measurements of the top quark mass from data collected by the ATLAS and CMS experiments at $\sqrt{s}=7$ and 8 TeV

The ATLAS & CMS collaborations Hayrapetyan, Aram ; Tumasyan, Armen ; Adam, Wolfgang ; et al.
Phys.Rev.Lett. 132 (2024) 261902, 2024.
Inspire Record 2789110 DOI 10.17182/hepdata.143309

A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The data sets used correspond to an integrated luminosity of up to 5 and 20$^{-1}$ of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak $t$-channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is $m_\mathrm{t}$ = 172.52 $\pm$ 0.14 (stat) $\pm$ 0.30 (syst) GeV, with a total uncertainty of 0.33 GeV.

1 data table

Uncertainties on the $m_{t}$ values extracted in the LHC, ATLAS, and CMS combinations arising from the categories described in the text, sorted in order of decreasing value of the combined LHC uncertainty.


Measurement of the total and differential cross-sections of $t\bar{t}W$ production in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
JHEP 05 (2024) 131, 2024.
Inspire Record 2745375 DOI 10.17182/hepdata.149762

Measurements of inclusive and differential production cross-sections of a top-quark-top-antiquark pair in association with a $W$ boson ($t\bar{t}W$) are presented. They are performed by targeting final states with two same-sign or three isolated leptons (electrons or muons) and are based on $\sqrt{s}=13$ TeV proton-proton collision data with an integrated luminosity of 140 fb$^{-1}$, recorded from 2015 to 2018 with the ATLAS detector at the Large Hadron Collider. The inclusive $t\bar{t}W$ production cross-section is measured to be $880 \pm 80$ fb, compared to a reference theoretical prediction of $745 \pm 50\,\textrm{(scale)} \pm 13\,\textrm{(2-loop approx.)} \pm 19\,\textrm{(PDF,} \alpha_{\textrm{S}})$ fb. Differential cross-section measurements characterise this process in detail for the first time. Several particle-level observables are compared with a variety of theoretical predictions, which generally agree well with the normalised differential cross-section results. Additionally, the relative charge asymmetry of $t\bar{t}W^{+}$ and $t\bar{t}W^{-}$ is measured inclusively to be ${A_{\mathrm{C}}^{\mathrm{rel}}} = 0.33 \pm 0.05$, in very good agreement with the theoretical prediction of $0.322 \pm 0.003\,\mathrm{(scale)} \pm 0.007\,\mathrm{(PDF)}$, as well as differentially.

2 data tables

All the entries of this HEP data record are listed.

Results of inclusive cross section measurement


Study of $Z \to ll\gamma$ decays at $\sqrt s~$= 8 TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, Dale ; et al.
Eur.Phys.J.C 84 (2024) 195, 2024.
Inspire Record 2712353 DOI 10.17182/hepdata.131524

This paper presents a study of $Z \to ll\gamma~$decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton-proton data sample corresponding to an integrated luminosity of 20.2 fb$^{-1}$ collected at a centre-of-mass energy $\sqrt{s}$ = 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with state-of-the-art predictions for final-state QED radiation. First measurements of $Z \to ll\gamma\gamma$ decays are also reported.

77 data tables

Unfolded $M(l^{+}\gamma)$ distribution for $Z \to ee\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 63717.4 $\pm$ 252.4, NPowHeg truth =338714.

Unfolded $M(l^{-}\gamma)$ distribution for $Z \to ee\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 63855.8 $\pm$ 252.7 , NPowHeg truth =338708.

Unfolded $M(l^{+}\gamma)$ distribution for $Z \to \mu\mu\gamma$ process with dressed leptons and bkg subtraction. $M_{ll}>20$ GeV. Nexp.un f. = 64809.8 $\pm$ 254.6, NPowHeg truth =634285.

More…

Version 2
A precise measurement of the Z-boson double-differential transverse momentum and rapidity distributions in the full phase space of the decay leptons with the ATLAS experiment at $\sqrt s$ = 8 TeV

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Eur.Phys.J.C 84 (2024) 315, 2024.
Inspire Record 2698794 DOI 10.17182/hepdata.144246

This paper presents for the first time a precise measurement of the production properties of the Z boson in the full phase space of the decay leptons. This is in contrast to the many previous precise unfolded measurements performed in the fiducial phase space of the decay leptons. The measurement is obtained from proton-proton collision data collected by the ATLAS experiment in 2012 at $\sqrt s$ = 8 TeV at the LHC and corresponding to an integrated luminosity of 20.2 fb$^{-1}$. The results, based on a total of 15.3 million Z-boson decays to electron and muon pairs, extend and improve a previous measurement of the full set of angular coefficients describing Z-boson decay. The double-differential cross-section distributions in Z-boson transverse momentum p$_T$ and rapidity y are measured in the pole region, defined as 80 $<$ m $<$ 100 GeV, over the range $|y| <$ 3.6. The total uncertainty of the normalised cross-section measurements in the peak region of the p$_T$ distribution is dominated by statistical uncertainties over the full range and increases as a function of rapidity from 0.5-1.0% for $|y| <$ 2.0 to 2-7% at higher rapidities. The results for the rapidity-dependent transverse momentum distributions are compared to state-of-the-art QCD predictions, which combine in the best cases approximate N$^4$LL resummation with N$^3$LO fixed-order perturbative calculations. The differential rapidity distributions integrated over p$_T$ are even more precise, with accuracies from 0.2-0.3% for $|y| <$ 2.0 to 0.4-0.9% at higher rapidities, and are compared to fixed-order QCD predictions using the most recent parton distribution functions. The agreement between data and predictions is quite good in most cases.

10 data tables

Measured $p_T$ cross sections in full-lepton phase space for |y| < 0.4.

Measured $p_T$ cross sections in full-lepton phase space for 0.4 < |y| < 0.8.

Measured $p_T$ cross sections in full-lepton phase space for 0.8 < |y| < 1.2.

More…

Evidence for the Higgs boson decay to a $Z$ boson and a photon at the LHC

The ATLAS & CMS collaborations Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Rev.Lett. 132 (2024) 021803, 2024.
Inspire Record 2666787 DOI 10.17182/hepdata.142406

The first evidence for the Higgs boson decay to a $Z$ boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision data sets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140 fb$^{-1}$ for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is $2.2\pm0.7$ times the Standard Model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.

1 data table

The negative profile log-likelihood test statistic, where $\Lambda$ represents the likelihood ratio, as a function of the signal strength $\mu$ derived from the ATLAS data, the CMS data, and the combined result.


Observation of $W\gamma\gamma$ triboson production in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abeling, Kira ; et al.
Phys.Lett.B 848 (2024) 138400, 2024.
Inspire Record 2686237 DOI 10.17182/hepdata.144508

This letter reports the observation of $W(\ell\nu)\gamma\gamma$ production in proton-proton collisions. This measurement uses the full Run 2 sample of events recorded at a center-of-mass energy of $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC, corresponding to an integrated luminosity of 140 fb$^{-1}$. Events with a leptonically-decaying $W$ boson and at least two photons are considered. The background-only hypothesis is rejected with an observed and expected significance of $5.6$ standard deviations. The inclusive fiducial production cross section of $W(e\nu)\gamma\gamma$ and $W(\mu\nu)\gamma\gamma$ events is measured to be $\sigma_{\mathrm{fid}} = 13.8 \pm 1.1 (\mathrm{stat}) \substack{+2.1 \\ -2.0} (\mathrm{syst}) \pm 0.1 (\mathrm{lumi})$ fb, in agreement with the Standard Model prediction.

1 data table

The measured fiducial $W(\rightarrow e\nu / \mu\nu)\gamma\gamma$ integrated cross section compared with both the signal event generator predictions.