We have measured the inclusive cross section for production of negative pions near mid-rapidity in 20 Ne + NaF , 139 La + 139 La and 197 Au + 197 Au collisions at E = 183 and 236 MeV/u. Au + Au is the heaviest system from which subthreshold pion production has been measured to date. The dependence of the pion cross section on pion energy, beam energy and associated charged particle multiplicity is consistent with previous results both above and below threshold. The dependence of the cross section on the mass of the colliding system varies only slightly as the beam energy is reduced below threshold, in contrast to some previous measurements. Comparison with theory suggests that at these energies the pion production process is still dominated by nucleon-nucleon collisions.
No description provided.
No description provided.
Dielectron production in p+d and p+p collisions at the beam kinetic energy of 4.9 GeV has been measured with the Dilepton Spectrometer. Features of the dielectron cross section have been studied with cuts on the mass and transverse momentum of the pairs. The spectra for several regions of phase space are presented as a function of the pair mass and transverse momentum.
Mass distribution.
Mass distribution.
Transverse momentum distribution.
This paper reports a search for excited electrons at the HERA electron-proton collider. In a sample corresponding to an integrated luminosity of 26 nb − , no evidence was found for any resonant state decaying into e − γ , ν W − or e − Z 0 . Limits on the coupling strength of an excited electron have been determined for masses between 45 and 225 GeV. This study also reports the observation of the wide-angle e γ Compton scattering process.
No description provided.
We measure the Drell-Yan differential cross section d2σdMdy||y|<1 over the mass range 11<M<150 GeV/c2 using dielectron and dimuon data from p¯p collisions at a center-of-mass energy of s=1.8 TeV. Our results show the 1M3 dependence that is expected from the naive Drell-Yan model. In comparison to the predictions of recent QCD calculations we find our data favor those parton distribution functions with the largest quark contributions in the x interval 0.006 to 0.03.
Dielectron differential cross section.
Dimuon differential cross section.
Drell-Yan differential cross section for combined dielectron and dimuon data. Error includes both statistics and systematics.
The dijet invariant mass distribution has been measured in the region between 140 and 1000 GeV/c2, in 1.8 TeV p p¯ collisions. Data collected with the Collider Detector at Fermilab show agreement with QCD calculations. A limit on quark compositeness of Λc>1.3 TeV is obtained. Axigluons with masses between 240 and 640 GeV/c2 are excluded at 95% C.L. if we assume ten open decay channels. Model-independent limits on the production of heavy particles decaying into two jets are also presented.
No description provided.
The cross section for exclusive π+ electroproduction on the proton has been measured near threshold for the first time at two different values of the virtual photon polarization (ɛ∼0.2 and ɛ∼0.7). Using the low energy theorem for this reaction we deduce the axial and pseudoscalar weak form factors GA and GP at ‖t‖=0.073, 0.139, and 0.179 (GeV/c)2. The slope of GA agrees with the value obtained in neutrino experiments. GP satisfies the pion pole dominance hypothesis, which is thus verified for the first time in this range of transfer.
No description provided.
No description provided.
No description provided.
We present a measurement of the b-quark cross section in 1.8 TeV p-p¯ collisions recorded with the Collider Detector at Fermilab using muonic b-quark decays. In the central rapidity region (‖yb‖<1.0), the cross section is 295±21±75 nb (59±14±15 nb) for pTb>21 GeV/c (29 GeV/c). Comparisons are made to previous measurements and next-to-leading order QCD calculations.
No description provided.
The first measurement of the neutron form factor in the time-like region has been performed by the FENICE experiment at the ADONE e + e − storage ring. Results at q 2 = 4.0 and 4.4 (GeV/ c ) 2 , together with a new measurement of the proton form factor are presented here.
Neutron form factor and cross section.
Preliminary analysis of proton form factor and cross section.
The forward-backward asymmetries of$$e^ + e^ - \to Z^0 \to b\bar b and e^ + e^ - \to Z^0 \to c\bar c$$
Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit, neglecting the effects of B0-BBAR0 mixing.
Measurement of the asymmetry in b-quark production on the Z0 peak using a two parameter fit and correcting for B0-BBAR0 mixing. The second systematic error is due to the uncertainty of the mixing factor.
Measurement of the asymmetry in c-quark production on the Z0 peak using a two parameter fit.
We report the full reconstruction of χc mesons through the decay chain χc→J/ψ γ, J/ψ→μ+μ−, using data obtained at the Collider Detector at Fermilab in 2.6±0.2 pb−1 of p¯p collisions at √s =1.8 TeV. This exclusive χc sample is used to measure the χc-meson production cross section times branching fractions. We obtain σ×B=3.2±0.4(stat)−1.1+1.2(syst) nb for χc mesons decaying to J/ψ with pT>6.0 GeV/c and pseudorapidity ‖η‖<0.5. From this and the inclusive J/ψ cross section we calculate the inclusive b-quark cross section to be 12.0±4.5 μb for pTb>8.5 GeV/c and ‖yb‖<1.
No description provided.
This determination of the b-quark cross section uses an earlier CDF measurement of the pbar p --> J/PSI X cross section of 6.88 +- 1.11 nb. See Abe et al. PRL 69, 3704.