We have measured the crosss section for the reaction e + e − → 4 π ± in the energy range 1 2–3.0 GeV.No statistically significant evidence for a new vector meson in the ϱ″ region is found.
No description provided.
We have observed 1085 events of the type e + e − → hadrons, in the total centre-of-mass energy range √ s = 1.2 to 3.0 GeV. The energy dependence of the total annihilation cross-section, parametrized in the form σ ( e + e − → hadrons ) = A · s n , is measured to be n = -(1.54 −0.29 +0.17 ) in the above energy range.
RESULTS USING THE (AP P) MODEL WITH PHASE-SPACE CORRECTIONS.
R AS CALCULATED FROM THE TOTAL HADRONIC CROSS SECTION USING THE (AP P) MODEL.
TOTAL CROSS SECTIONS OBTAINED USING THE QUASI-MODEL-INDEPENDENT METHOD ARE TABULATED HERE.
The possible existence of new vector mesons above the ρ is investigated. The conclusion is that our data are compatible with the existence of the ρ′-meson only if we assume as a firm theoretical prediction the Gounaris-Sakurai tail of the standard ρ-meson. Furthermore our data are compatible with the existence of the ρ″-meson if we assume the validity of the\(\bar p\)p model for the calculation of the multihadron cross-section.
THESE MEASUREMENTS OF THE PION FORM FACTOR ARE GIVEN IN D. BOLLINI ET AL., NCL 14, 418 (1975).
THESE MEASUREMENTS OF THE FOUR CHARGED PION CROSS SECTION ARE GIVEN IN M. BERNARDINI ET AL., PL 53B, 384 (1974).
THESE MEASUREMENTS OF THE TOTAL HADRONIC CROSS SECTION ARE GIVEN IN M. BERNARDINI ET AL., PL 51B, 200 (1974).
The angular distribution of 2720 tracks of 1085 hadronic final states produced from (e+e-) annihilation has been studied in the 1.2 to 3.0 GeV total centre-of-mass energy range. If we parametrize the angular distribution in terms off(θ) =1 + A cos2 θ, where 6 is the angle between the hadronic track produced and the colliding-beam direction, the results show thatA is less than 0.21, with 90% confidence.
ANGULAR DISTRIBUTION OF CHARGED HADRONS FOUND TO BE 1 + (0.07 +- 0.11)*(COS(THETA)**2).
The study of 620 hadron pairs produced in the s -range (1.44−9.0) GeV 2 , has yielded 110 collinear hadronic events. Their identification in terms of π and K mesons allows the determination of the time-like electromagnetic from factors of these pseudoscalar mesons in the above time-like range. The total number of (e + e − ) events observed in the same experimental conditions is 18 048.
No description provided.
No description provided.
The proof is given for the existence of the reaction e + e − → h ± h ∓ in the energy range 1400–2400 MeV, and its energy dependence is compared with that of e + e − → e ± e ∓ , in the same experimental conditions of observation. The exponent of the s -dependence of the ratio α = (e + e − → h ± h ∓ )/ (e + e − → e ± e ∓ ) is measured to be n = 2.08 ± 0.45, in the s -range (1.96 − 5.76) GeV 2 , on the basis of 51 e + e − → h ± h ∓ events and 8918 e + e − → e ± e ∓ events observed.
CROSS SECTION FOR PRODUCTION OF CHARGED HADRON PAIRS.
The observation of 21 K + K − pairs in 38 hadron pair events produced at 1.5, 1.6, and 1.7 GeV total centre-of-mass energies in e + e − annihilations, establishes that time-like photons produce K pairs and π pairs with comparable rates in this energy range. The K-meson electromagnetic form factor at a mean s -value of 2.4 GeV 2 is measured to be | F K | = 0.50±0.08. The number of e + e − pairs observed in the same angular and energy range is 5148.
No description provided.
Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions $\vec\gamma + p \to K^+ + \vec\Lambda$ and $\vec\gamma + p \to K^+ + \vec\Sigma^0$. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies $W$ between 1.6 and 2.53 GeV, and for $-0.85<\cos\theta_{K^+}^{c.m.}< +0.95$. For the $\Lambda$, the polarization transfer coefficient along the photon momentum axis, $C_z$, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, $C_x$, is smaller than $C_z$ by a roughly constant difference of unity. Most significantly, the {\it total} $\Lambda$ polarization vector, including the induced polarization $P$, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the $\Sigma^0$ this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.032 GeV and W = 1.679 GeV.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.132 GeV and W = 1.734 GeV.
Coefficients Cx and Cz for the reaction GAMMA P --> K+ LAMBDA for incident energy = 1.232 GeV and W = 1.787 GeV.
The charge distribution of multifragments of the 208 Pb beam at 160A GeV in nuclear emulsion has been fitted with a power-law. The moments of the resulting nuclear charged fragment distribution dis provide strong evidence that nuclear matter possesses critical point observables. The values of the critical exponents (γ, β and τ) extracted from the 208 Pb beam are compared with the values for the 197 Au beams at 10.6A GeV and 1A GeV. These values are very close to those for a liquid-gas system.
No description provided.
Transverse momentum (p^e_T) spectra of electrons from semileptonic weak decays of heavy flavor mesons in the range of 0.3 < p^e_T < 9.0 GeV/c have been measured at mid-rapidity (|eta| < 0.35) by the PHENIX experiment at the Relativistic Heavy Ion Collider in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The nuclear modification factor R_AA with respect to p+p collisions indicates substantial energy loss of heavy quarks in the produced medium. In addition, the azimuthal anisotropy parameter v_2 has been measured for 0.3 < p^e_T < 5.0 GeV/c in Au+Au collisions. Comparisons of R_AA and v_2 are made to various model calculations.