The reaction γ+d → π++π−+p + n has been measured in a kinematically complete way at incident photon energies from 570 to 850 MeV in steps of 40 MeV. From detailed comparison of measured data with results of event simulations, it is concluded that three different mechanisms, the quasi-free, double-delta and phase space productions, contribute to the reaction. Each of the cross sections corresponding to these mechanisms is determined separately.
SYSTEMATIC ERRORS ARE NOT INCLUDED.
SYSTEMATIC ERRORS ARE NOT INCLUDED.
We present the first measurement of the left-right cross section asymmetry (ALR) for Z boson production by e+e− collisions. The measurement was performed at a center-of-mass energy of 91.55 GeV with the SLD detector at the SLAC Linear Collider which utilized a longitudinally polarized electron beam. The average beam polarization was (22.4±0.6)%. Using a sample of 10 224 Z decays, we measure ALR to be 0.100±0.044(stat)±0.004(syst), which determines the effective weak mixing angle to be sin2θWeff=0.2378 ±0.0056(stat)±0.0005(syst).
R and L refer to Right and Left handed beam polarization.
Effective weak mixing angle.
We have measured antiproton production cross sections as functions of centrality in collisions of 14.6 GeV/c per nucleon Si28 ions with targets of Al, Cu, and Pb. For all targets, the antiproton yields increase linearly with the number of projectile nucleons that have interacted, and show little target dependence. We discuss the implications of this result on the production and absorption of antiprotons within the nuclear medium.
No description provided.
No description provided.
No description provided.
None
No description provided.
We carried out the energy scan between E CM = 58 and 60 GeV at the TRISTAN e + e − collider to search for the possible narrow resonance suggested by the L3 experiment at LEP. The total cross sections are measured for γγ, multihadron, e + e − and μ + μ − production at ten energy points covering this energy range almost uniformly. The results are in good agreement with the Standard Model predictions, and 95% confidence level upper limits are set to Γ ee × BR of the hypothetical scalar and tensor resonances.
No description provided.
No description provided.
No description provided.
The beam energy and invariant mass dependence of the dielectron yield in p + d interactions relative to the yield in p + p interactions is presented for incident kinetic energies from 1.0–4.9 GeV. The ratio of the yield in p + d interactions to that in p + p interactions decreases from 10.5±1.6 at 1.0 GeV to 1.96±0.08 at 4.9 GeV for electron pairs with invariant masses ⩾ 0.15 GeV/ c 2 . The large ratio at 1.0 GeV suggests that dielectron production in the p + d system is dominated by a p + n process. The beam energy dependence of the ratio indicates that this p + n contribution decreases with respect to the other dielectron sources as the incident energy is increased.
No description provided.
No description provided.
No description provided.
We have studied the production of charged D ∗ mesons in e + e − annihilation at an average center-of-mass energy of 58.0 GeV. Charged D ∗ mesons were identified using two independent methods; the mass-difference method and the detection of the low transverse-momentum pion. The forward-backward asymmetry of the charm quark production was measured to be A c = −0.61±0.13(stat.)±0.08(syst.). The cross section of inclusive D ∗ production was found to be σ(e + e − →D ∗ ± +X) = 24.5 ± 5.3 ( stat. )±3.0( syst. ) pb. If we assume the standard model prediction for the charm quark production, we obtain the branching ratio for the charm quark to produce a charged D ∗ meson to be Br (c→D ∗+ + X) = (22±5( stat. )±3( syst. ))% .
Forward-backward asymmetry of charm quarks at the lowest order.
No description provided.
We have measured angular distributions of differential cross sections and analyzing powers ( A y ) of the reaction p p → d π + at six incident proton energies between 1.3 and 2.4 GeV. They confirm the rapid variations at √ s = 2.65 GeV suggested by earlier experiments. Deviations from a monotonic behavior are also found in the excitation functions of the differential cross section at t = 0 or where Θ π + (c.m.) = 0°. Structures clearly appear at √ s = 2.4 and 2.65 GeV, in some coefficients of the associated Legendre function expansions of A y .
No description provided.
No description provided.
No description provided.
The dijet invariant mass distribution has been measured in the region between 120 and 1000 GeV/c2, in 1.8-TeV pp¯ collisions. The data sample was collected with the Collider Detector at Fermilab (CDF). Data are compared to leading order (LO) and next-to-leading order (NLO) QCD calculations using two different clustering cone radii R in the jet definition. A quantitative test shows good agreement of data with the LO and NLO QCD predictions for a cone of R=1. The test using a cone of R=0.7 shows less agreement. The NLO calculation shows an improvement compared to LO in reproducing the shape of the spectrum for both radii, and approximately predicts the cone size dependence of the cross section.
Observed cross section using R = 1.0. The second systematic error is the theoretical uncertainty and includes only the effect of the out-of-cone losses, the underlying event energy, and the contribution of multi-jet events.
Observed cross section using R = 0.7. The second systematic error is the theoretical uncertainty and includes only the effect of the out-of-cone losses, the underlying event energy, and the contribution of multi-jet events.
The production dynamics of baryon-antibaryon pairs are investigated using hadronic Z 0 decays, recorded with the OPAL detector, which contain at least two identified Λ baryons. The rapidly difference for Λ Λ pairs shows the correlations expected from models with a chain-like production of baryon-antibaryon pairs. If the baryon number of a Λ is compensated by a Λ , the Λ is found with a probability of 53% in an interval of ±0.6 around the Λ rapidity. This correlation strength is weaker than predicted by the Herwig Monte Carlo and the Jetset Monte Carlo with a production chain of baryon-antibaryon, and stronger than predicted by the UCLA model. The observed rapidity correlations can be described by the Jetset Monte Carlo with a dominant production chain of baryon-meson-antibaryon, the popcorn mechanism. In addition to the short range correlations, one finds an indication of a correlation of Λ Λ pairs in opposite hemispheres if both the Λ and the Λ have large rapidities. Such long range correlations are expected if the primary quark flavours are compensated in opposite hemispheres and if these quarks are found in energetic baryons. Rates for simultaneous baryon and strangeness number compensation for Λ Λ , Ξ − Ξ + and Ξ − Λ ( Λ + Λ ) are measured and compared with different Monte Carlo models.
No description provided.
Opposite and same baryon number invariant PI P mass distribuition for additional LAMBDA(LAMBDABAR) candidates in events with one identified LAMBDA(LAMBDABAR). CT.= Data read from plot.
Opposite and same baryon number invariant PI P mass distribuition for additional LAMBDA(LAMBDABAR) candidates in events with one identified XI-(XIBAR+). CT.= Data read from plot.