Systematic study of low-mass electron pair production in p Be and p Au collisions at 450-GeV/c.

Agakichiev, G. ; Appenheimer, M. ; Averbeck, R. ; et al.
Eur.Phys.J.C 4 (1998) 231-247, 1998.
Inspire Record 473236 DOI 10.17182/hepdata.43113

In a joint effort the CERES/NA45 and TAPS collaborations have measured low-mass electron pairs in p–Be and p–Au collisions at 450 GeV/c at the CERN SPS. In the range covered up to ≈ 1.5 GeV/c2 the mass spectra from p–Be and p–Au collisions are well explained by electron pairs from decays of neutral mesons. For p–Au our result is new. For p–Be, the simultaneously measured electron pair inclusive pair spectrum in which instrumental uncertainties are highly reduced. We confirm the earlier finding of HELIOS-1 with significantly reduced systematic uncertainties of 23% in the mass range below 450 MeV/c2, and of 28% in the mass range above 750 MeV/c2 at 90% confidence limit. Any unconventional source of electron pairs is limited by these error margins as the percentage fraction of the hadronic contribution.

1 data table

Relative production cross sections.


Phi, rho, and omega production in p U, O U and S U reactions at 200-GeV per nucleon

The NA38 collaboration Baglin, C. ; Baldisseri, A. ; Bussiere, A. ; et al.
Phys.Lett.B 272 (1991) 449-454, 1991.
Inspire Record 325656 DOI 10.17182/hepdata.29289

Low mass muon pair production at high P T and low X F studied in pU, OU and SU 200 GeV per nucleon react ions. When energy density or projectile mass are increased, φ production is enhanced as compared with the yield of muon pairs in the mass continuum (1.7< M μμ < 2.4 GeV/ c 2 ), whereas the production of ω and ϱ, experimentally unresolved, remains approximately constant. This φ enhancement is in agreement with predictions based on quark-gluon plasma formation and, together with the previously reported J/Ψ suppression, puts severe constraints on a purely hadronic description of nucleus-nucleus collisions.

1 data table

The cross sections are parametrized as A**POWER.