The measurements of the differential cross section of elastic p-p scattering in relative units were performed in the energy range of 12–70 GeV. The values of the slope parameter were obtained from this data. It was shown that the slope parameter of the differential p-p scattering is monotonously increasing when the proton energy rises in the range 12–70 GeV. We have obtained the slope Pomeranchuk's pole trajectory from this data: α′ p = 0.40 ± 0.09.
No description provided.
The results of the experiment searching for quarks with charge − 1 3 and 2 3 produced by 70 GeV protons on an aluminium target at zero angle are reported. For the selection of quarks the system of spectrometric scintillation counters, time-of-flight spectrometer, gas Cerenkov threshold counter and magnetic spectrometer with spark chambers were used. In the range of masses available at the IHEP accelerator, quarks were not found. The upper limit estimation of the differential cross-section for quark production with mass ⩽ 5 GeV /c 2− and charge −1 3 is 7×10 −38 cm 2 / ster GeV /c (with 90% confidence level). The total cross-section for quark production with charge −1 3 and mass 4.5–5 GeV /c 2 does not exceed 3×10 −39 cm 2 .
No description provided.
No description provided.
The differential cross-sections in the range of four momentum transfer squared from 0.003 to 0.120 (GeV c) 2 were measured at 30, 50 and 70 GeV by using a thin polyethilene target in the internal proton beam of the Serpukhov accelerator. The slope parameter, the ratio of the real to the imaginary part of the forward amplitude and the cross-section in the diffraction cone were measured.
No description provided.
ASSUMING UNIFORM SLOPE.
3 H̃e nuclei were observed in the negative beam, produced by 70 GeV protons on an Al target. Five 3 H̃e have been identified among 2.4 · 10 11 particles that passed through the apparatus. Scintillation and Čerenkov counters were used to measure the electrical charge and velocity of particles. The mass of 3 H̃e is found to be M 3 H ̃ e = (1.00 ± 0.03)3m p , the charge is z = (0.99 ± 0.03)2 e . The ratio of differential production cross sections of 3 H ̃ e (P = 20 GeV /c) and π − (P = 10 GeV/c ) equals 2 · 10 −11 . This corresponds to antihelium −3 production cross section d 2 σ 3 H ̃ e / d Ω d P = 2.0 · 10 −35 cm 2 / sr · GeV /c per Al nuclei and 2.2 · 10 −36 cm 2 sr · GeV/ c per nucleon.
No description provided.
No description provided.
None
No description provided.
No description provided.
Proton-proton elastic scattering has been measured over the four-momentum transfer squared 0.0007 ⩽ t ⩽ 0.02 GeV 2 /c 2 . A gas hydrogen jet has been used as an internal target of the accelerator. The results indicate that the ratio of the real to the imaginary part of the proton-proton forward scattering amplitude rises smoothly with increasing energy from α = −0.35 ± 0.05 at p = 9.39 GeV/ c to α = −0.092 ± 0.011 at p = 69.8 GeV/ c .
THE TOTAL ELASTIC CROSS SECTION IS DERIVED FROM THE OPTICAL THEOREM POINT AND SLOPE PARAMETER.
None
No description provided.
None
TWO-PARAMETER FIT TO SLOPE ALSO GIVEN IN PAPER.
No description provided.
In this paper we present tables of absolute differential cross sections of elastic pp scattering together with the values of the slope parameter B and the real-part parameter α, where B= d d t In dσ d t α= Re A(0) Im A(0) and A (0) is the amplitude of elastic pp scattering at t = 0. The cross-section data have been obtained at the Serpukhov accelerator from 8 to 70 GeV in the | t |-range 0.0007 − 0.12 (GeV/ c ) 2 .
No description provided.
No description provided.
No description provided.
The total elastic p-p, p-d and p-n cross sections measured at the Serpukhov accelerator and Dubna synchrophasotron are presented in this paper.
SLOPE MEASURED FOR -T = 0.08 TO 0.12 GEV**2.
No description provided.