TRANSVERSE SPIN DEPENDENCE OF THE P P TOTAL CROSS-SECTION DELTA sigma-t FROM 0.8-GEV/C TO 2.5-GEV/C

Madigan, W.P. ; Bell, D.A. ; Buchanan, J.A. ; et al.
Phys.Rev.D 31 (1985) 966-975, 1985.
Inspire Record 216906 DOI 10.17182/hepdata.23564

The difference ΔσT=σ(↓↑)-σ(↑↑) between the proton-proton total cross sections for protons in pure transverse-spin states, was measured at incident momenta 0.8 to 2.5 GeV/c in experiments performed at the Los Alamos Clinton P. Anderson Meson Physics Facility and the Argonne Zero Gradient Synchrotron. In agreement with other data, peaks were observed at center-of-mass energies of 2.14 and 2.43 GeV/c2, where D21 and G41 dibaryon resonances have been proposed.

2 data tables

DATA FROM LAMPF EXPERIMENT.

DATA FROM ARGONNE EXPERIMENT.


$\Delta (\Sigma^-$l) and $\Delta$ (Sigma-t) Between 200-{MeV} and 520-{MeV}

Axen, D. ; Shypit, R. ; Comyn, M. ; et al.
J.Phys.G 7 (1981) L225-L230, 1981.
Inspire Record 171520 DOI 10.17182/hepdata.38530

New pp measurements of Delta sigma L and Delta sigma T between 200 and 520 MeV disagree with earlier Argonne data, and resolve discrepancies with inelastic data, phase-shift analysis and forward dispersion relations.

2 data tables

TOTAL CROSS SECTION DIFFERENCE FOR PURE TRANSVERSE SPIN STATES (ANTIPARALLEL MINUS PARALLEL).

TOTAL CROSS SECTION DIFFERENCE FOR PURE LONGITUDINAL SPIN STATES (ANTIPARALLEL MINUS PARALLEL).


Measurement of the Transverse Spin Dependence of the p p Total Cross-Section in the 1-GeV/c-3-GeV/c Region

Biegert, E.K. ; Buchanan, J.A. ; Clement, J.M. ; et al.
Phys.Lett.B 73 (1978) 235-238, 1978.
Inspire Record 134224 DOI 10.17182/hepdata.27471

The pp total cross section difference between pure transverse spin states was measured in the laboratory momentum range 1–3 GeV/ c . Significant differences were found and these differences show striking energy dependence. This structure is in disagreement with the predictions of simple exchange models.

2 data tables

No description provided.

REVISED DATA (J. D. LESIKAR, PRIV COMM, 19 JUN 1981). NOW CORRECTED FOR COULOMB-NUCLEAR INTERFERENCE. IN ADDITION, THE LOWEST MOMENTUM DATA POINT IS NOW KNOWN TO BE IN ERROR.